

Groundwater Feasibility Assessment Report 1750 Hwy 3, Osoyoos, B.C.

Prepared for:

Mr. Steinar Johnsen 220-2450 Radio Tower Road Osoyoos, BC V0H ITI

October 2022 Project: 21-090-01VR Prepared by: Western Water Associates Ltd. 1003 Kalamalka Lake Rd. Vernon, B.C. VIT 6V4 Canada

October 28, 2022

Mr. Steinar Johnsen 220-2450 Radio Tower Road Osoyoos, BC V0H ITI

Re: Groundwater Feasibility Assessment Report: OCP / Rezoning of 1750 Highway 3, Osoyoos, B.C.

Western Water Associates Ltd. (WWAL) is pleased to provide this groundwater feasibility assessment to support Official Community Plan and Zoning Bylaw Amendments for the property located at 1750 Hwy 3 near Osoyoos, BC. If the amendments are approved, the plan is to complete a 5-lot subdivision.

This report documents a pumping test conducted on a new domestic water supply test well (WPID 62040) while observing aquifer response in existing onsite and offsite wells in the vicinity. This 150 mm (6") diameter drilled well was completed to a depth of 122 m (400 ft), encountered bedrock at 5.5 m (18 ft) below grade, and is interpreted as drawing water from provincially mapped bedrock Aquifer 808.

The tested well was pumped at a flow rate of 8 L/min (2.1 USgpm) for 72 hours, comparable to five times the Regional District of Okanagan Similkameen (RDOS) Subdivision Servicing bylaw rate¹, to stress the aquifer and simulate the effect of groundwater withdrawal of the subdivision at full build out. Offsite wells were monitored during the testing program and the report includes a discussion of the aquifer water balance as requested by the Regional District of Okanagan Similkameen.

A raw water quality sample was collected from the well and submitted for analysis. The raw well water is considered potable, meeting the applicable health-based Guidelines for Canadian Drinking Water Quality.

Based on our assessment, the bedrock formation beneath the proposed subdivision has demonstrated sufficient water is available to supply the proposed development at full build-out. Subsequent drilling and testing of the remaining wells for the proposed subdivision will be required and subject to evaluation against the RDOS subdivision servicing bylaw requirements.

We trust that the professional opinions and advice presented in this document are sufficient for your current requirements. Should you have any questions, or if we can be of further assistance in this matter, please contact the undersigned.

WESTERN WATER ASSOCIATES LTD. (EGBC Permit to Practice No. 1001419)

Madaen

Laura Maclaren, B.Sc., GIT Junior Hydrogeologist

ESSIO HOVINCE D. HOME BRITISH COLLEMPIA OCT 28/2022 Christopher Homes, P.Geo.

Senior Hydrogeologist

RDOS Subdivision Servicing Bylaw Rate of 2,300 L/day x 5 lots = 11,500 L/day or 2.1 USgpm.

TABLE OF CONTENTS

Ι.	INTR	ODUCTION	3
	1.1	PROJECT BACKGROUND	. 3
	1.2	SCOPE OF SERVICES	. 5
2.	SITE	DESCRIPTION AND HYDROGEOLOGY	6
	2.1	Physiography and Surrounding Land Use	. 6
	2.2	GEOLOGIC SETTING	. 6
	2.3	HYDROGEOLOGICAL SETTING AND MAPPED AQUIFERS	. 6
3.	WEL	L TESTING METHODS	9
4.	WEL	L TESTING RESULTS I	
	4.1	CONSTANT RATE TEST RESULTS	
	4.2	POTENTIAL WELL INTERFERENCE	
	4.3	SEASONAL WATER LEVEL EFFECTS	11
	4.4	SHORT AND LONG TERM WELL YIELD	12
	4.5	AQUIFER YIELD AND FUTURE WELL LOCATION CONSIDERATIONS	12
5.	WAT	ER QUALITY I	3
6.	Sour	RCE WATER PROTECTION CONSIDERATIONS I	5
7.	CON	CLUSIONSI	5
8.	RECO	DMMENDATIONS I	6
9.	WEL	L OWNER RESPONSIBILITIES I	7

List of Figures (following report)

Figure 1 – General Project Location Figure 2 – Site Plan including Proposed Development

Within Report:

Figure 4-1	Pumping and Observation Well Water Levels	I	I
------------	---	---	---

List of Tables

Table I.I	Select Well Details	.4
Table 2.1	Mapped Aquifers within 1.6 km of Site	.7
Table 5.1	Water Quality Summary	4

List of Appendices

- Appendix A RDOS and WRA Output and Relevant Well Logs
- Appendix B Pumping Test Data and Graphs
- Appendix C Laboratory Water Quality Reports
- Appendix D Photographic Documentation

I. INTRODUCTION

At the request of the developer, Mr. Steinar Johnsen, Western Water Associates Ltd. (WWAL) has completed a groundwater feasibility assessment for a proposed 5-lot subdivision, located at 1750 Highway 3, Osoyoos, BC (the Site) (Figure 1). This report summarizes the bedrock aquifer attributes at the site and presents the results of a pumping test completed on an existing well, analysis of sustainable well yield, discussion of well interference with neighboring wells, and water quality testing of the pumped well.

I.I Project Background

The site is located approximately 2 km east of Osoyoos, BC, situated along the steep western-facing embankment overlooking Highway 3. The site (PID 002-165-481) is comprised of Bareland Strata Lot 15 of Plan KAP21789, District Lot 2709, Sublot 2, Similkameen Division of the Yale Land District except Plan KAP90322.

The 31-acre parcel is located downslope and west of the Regal Ridge residential development located on the Anarchist Mountain highlands to the east. Plans for development of this lot include five approximately 2.5-acre residential lots on the western portion of the site, with the 14-acre remainder lot upslope to the east being set aside as a conservation area (Figure 2).

A review of bedrock wells in the vicinity of the site indicated that the depth to bedrock in this area can be quite variable, with bedrock outcrop observed onsite. Further, the well yields in this area can also vary, with lower producing (< 2 USgpm) wells located along the face of the bluff, and higher producing wells located downslope toward the west (in the valley bottom Aquifer #194) and upslope to the east (in the Osoyoos Mountain Estates Aquifer #808).

Two existing groundwater wells were identified onsite at the time of our assessment, as well as two offsite wells on the adjacent property (1806 Hwy 3), and select details for these wells are provided in Table 1.1

Table I I

I able 1.1 Select Well Details							
Well Information	WTN 105407 (WPID 27891)	WTN 124408 (WPID 62040)	WTN 84786 (Driveway Well)	WTN 69157 (Goat Paddock)			
Well Location	Onsite, south adjacent to access driveway	Onsite, north, eastern portion of Lot 5	Offsite, west, adjacent to driveway for 1806 Hwy 3.	Offsite west, adjacent to goat paddock at 1806 Hwy 3.			
Date drilling completed	June 30, 2009	April 30, 2021	March 30, 2005	May 27, 1995			
Drilling company	Cyclone Drilling Ltd.	Aqua Source Drilling Ltd.	Cyclone Drilling Ltd.	Quality Water Well Drilling Ltd.			
Borehole diameter	150 mm (6 inch) 100 mm (4 inch) liner	150 mm (6 inch) 100 mm (4 inch) liner	I 50 mm (6 inch) I 00 mm (4 inch) liner	150 mm (6 inch) unlined ²			
Total Depth (bgs)	55 m (180 ft)	122 m (400 ft)	158 m (520 ft)	155 m (510 ft)			
Casing stick-up (ags)	0.61 m (2 ft)	4.6 m (15 ft) ¹	0.61 m (2 ft)	0.61 m (2 ft)			
Static water level (btoc)	20.83 m (68.3 ft) September 14, 2022	13.62 m (44.7 ft) ¹ September 14, 2022	61.11 m (200.5 ft) September 14, 2022	61.70 m (202.42 ft) September 14, 2022			
Well Coordinates (Google Earth)	Lat: 49.019602 °E, Long: -119.409547 °N	Lat: 49.024753 °E, Long: -119.410779 °N	Lat: 49.024248 °N, Long: -119.413237 °E	Lat: 49.023961 °N, Long: -119.413112 °E			
Distance to pumped well	581 m south	0 m (pumped well)	188 m west	193 m west			

Solact Wall Datails

Notes: ¹ Initial casing stick-up above current ground level. Cut down to 0.60 m to facilitate testing/monitoring.

² Well log indicated unlined and steel cap at surface. New wellhead completion has aluminum well cap and PVC liner.

The site is currently vacant and is primarily in its natural state, except for one residence on proposed Lot 5 (under construction) and a preliminary construction roadway for temporary stockpiling of excavated materials. Satellite imagery showed no significant development of the site prior to fall 2015, when the access road into the upper reaches of the site (and proposed Lot 5) was established, as seen in the 2016 imagery (Google Earth, 2022).

Each of the proposed residential lots is to be serviced by onsite private domestic water supply wells and private septic disposal systems. The site requires both rezoning and OCP amendments from current zoned Large Holdings (LHI) to support the proposed subdivision, which were applied for in 2021². In a June 15, 2021 response letter, the RDOS requested a hydrogeological assessment be prepared that would evaluate and report on the water balance for the aquifer underlying the site, and whether there is an adequate water supply to support the proposed development and associated water demands.

WWAL designed and oversaw an assessment program, which included a desktop review of the underlying bedrock aquifer(s), a pumping test program and water quality testing of one of the existing wells on site. A flow rate of approximately 8 L/min (2.1 USgpm) was targeted, as this flow rate would simulate the withdrawal rate of up to five residential wells pumping simultaneously at the RDOS Subdivision Servicing Bylaw No. 2000 (2002) rate of \geq 2,300 L/day (equivalent to 1.6 L/min or 0.42 USgpm) to meet or exceed the residential onsite level-of-service demand at full build-out. The second by law requirement of demonstrating a flow capacity of \geq 20 L/min for one hour can be met by wellbore

² Both Electoral Area "A" Official Community Plan Amendment Bylaw No. 2905.01(2021) and Electoral Area "A" Zoning Amendment Bylaw No. 2451.27(2021) were applied for in 2021 and referenced in the RDOS response letter dated July 15, 2021.

storage. Future use of onsite storage (i.e. pressure tank or cistern) could also be considered to manage peaks in demand.

I.2 Scope of Services

WWAL provided the following hydrogeological services during the groundwater feasibility and well assessment program:

- 1) Reviewed available data including existing reports and letters pertaining to the site, well and aquifer mapping for the area, and weather and climate data from Environment Canada.
- 2) Reviewed the conceptual lot layout. Completed a site visit to assess wellhead access for the pumping test equipment, potential sources of contamination in the vicinity, and identified suitable offsite wells to monitor during the pumping test. Installed a pressure transducer into WTN 105407 to monitor potential well interference during the test.
- 3) Designed and oversaw a pumping test program to evaluate the sustainable yield and water quality from the onsite existing well WTN 124408.
 - a. In order to simulate the effect of groundwater withdrawal at full build-out, the well was pumped at a constant flow rate comparable to five times the RDOS bylaw rate (5 \times 2,300 L/day or 2.1 USgpm) for 72 hours.
 - b. A WWAL hydrogeologist contacted the pumping test contractor prior to the start of the pumping test and provided direction on pumping rate and data collection requirements. We maintained communications with the contractor throughout the testing procedure.
 - c. We identified two offsite wells and one onsite well to be monitored during the pumping test. The observation wells were monitored manually with a water level tape during the test by the contractor, to assess the potential for well interference.
 - d. Prior to the end of the pumping test, the contractor collected a water sample of the pumped discharge and delivered the sample to a laboratory for potability analysis testing. We evaluated the lab results against the Guidelines for Canadian Drinking Water Quality (GCDWQ).
 - e. Following the test, long-term water level recovery was monitored with a pressure transducer. The pressure transducer was moved from WTN 105407 into WTN 124408 by the contractor and retrieved from the well roughly one week later.
- 4) Analyzed and evaluated the pumping test data to estimate long-term sustainable well yield and aquifer yield for the bedrock aquifer underlying the site.
- 5) Prepared this groundwater feasibility assessment report, suitable for submission to the RDOS as a supporting document for the rezoning/OCP amendments.

2. SITE DESCRIPTION AND HYDROGEOLOGY

2.1 Physiography and Surrounding Land Use

The site is located approximately 2 km east of downtown Osoyoos, B.C. The site is accessed directly off of Highway 3 and sits upon a southwest facing slope at the eastern edge of Okanagan Valley (Figure 1).

To the north, east, and south of the site lie mountains dominated by predominantly undeveloped grasslands and sparse forests, with multiple watercourses draining these upland areas westward into the Okanagan Valley. The Regal Ridge residential development is situated at the top of the hill, approximately 2.5 km east of the site. Agricultural lands are located to the northwest, west and southwest of the site, Osoyoos Lake is 1.7 km to the west at its closest point, and the US border is 2.5 km south of the site.

Topography at the subject site itself is relatively steep, sloping southwesterly towards the highway. Elevations at the property range from approximately 623 metres above-sea-level (m asl) at the eastern boundary, to approximately 496 m asl at the western boundary (Google Earth, 2022). For comparison, the elevation of Osoyoos Lake at the valley floor is 276 m asl.

Figure 1 illustrates the general location of the site and Figure 2 depicts a more detailed site layout and surrounding land use in the area.

2.2 Geologic Setting

Bedrock geological mapping by the BC Geological Survey (BCGS) show the area as underlain by intrusive granite and alkali feldspar originating as porphyritic granite, granodiorite, and monzonite from the middle Jurassic period, some 157-178 Mya (Cui et al., 2019).

While we were not able to find surficial geology mapping extending up the hillside to the site, mapping of the Okanagan Valley indicates that post-glacial outwash terraces following the Wisconsin Glaciation period lie 520 m west of the site, extending to Osoyoos Lake, and running up the length of the Okanagan Valley (Nasmith, 1962). These sediments thin as you approach site, and only a thin veneer of sediment lies overtop bedrock over much of the site property.

The driller's log for onsite well WTN 105407 reports surficial deposits comprised of fine to medium sand with boulders and cobbles were encountered from 0 to 9 m below ground level (bgl), where crystalline bedrock was encountered. Toward the north of the site on proposed Lot 5, and approximately 67 m higher in elevation, the log for WTN 124408 reports surficial silt and boulders encountered from surface to 6 m bgl, underlain by crystalline bedrock. The logs for offsite wells WTN 69157 and WTN 84786, directly west of the site, report thin bouldery surficial deposits to a depth of up to 3 m, underlain by bedrock.

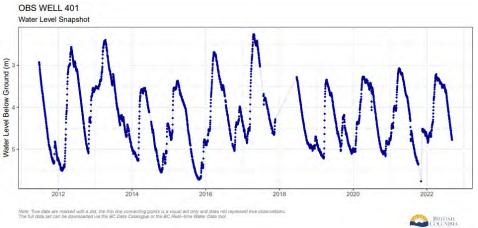
2.3 Hydrogeological Setting and Mapped Aquifers

Using the BC Water Resources Atlas (WRA) mapping tool (ENV 2022) and the RDOS Parcel Viewer (RDOS 2022), we identified two unnamed mapped drainages oriented east to west, breaking up the western-facing hillside into sections, with several more drainages in the vicinity of the site (Appendix A).

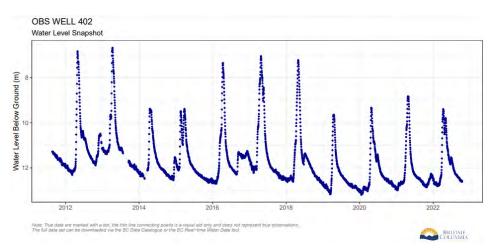
The nearest named creeks include Bourguiba Creek (40 m south of the site) which feeds into Haynes Creek (230 m southwest of the site). All nearby creeks convey water from the upland plateau east of the site toward the valley bottom, draining into Osoyoos Lake, the ultimate receptor for surface waters in this area. At the time of our site visit prior to the pumping test (September 7, 2022), WWAL field staff did not observe any groundwater seepages at the subject site or surface water flowing in these watercourses.

There are three provincially mapped aquifers within 1.6 km of the site (Appendix A), but only one is mapped as underlying the site. Details on the three aquifers are summarized in Table 2.1 below. As the bedrock aquifers (808 and 936) are of primary interest for our assessment of groundwater availability at the site, water level hydrographs from Provincial observation wells in those two aquifers are provided in Figures 2.1 and 2.2.

	Aquifer 808	Aquifer 194	Aquifer 936
Distance from site	Underlying	450 m west	1590 m northeast
Descriptive Location	East of Osoyoos, Anarchist Mountain	Osoyoos East	East of Osoyoos, Anarchist Mountain
Estimated area	18.6 km ²	5.3 km ²	16.1 km ²
Aquifer Classification	IIA	IIA	IIB
Aquifer Type	Fractured crystalline	Unconfined sand & gravel –	Fractured crystalline
	bedrock	late glacial outwash	bedrock
Productivity	Moderate	Moderate	Moderate
Demand	Moderate	Moderate	Moderate
Vulnerability	High	High	Moderate
Observation Well	OBS Well 401 – Osoyoos	OBS Well 467 – Osoyoos	OBS Well 402 – Osoyoos
	(Bullmoose Rd.)	East (52 nd Ave and 25 th St.)	(Anarchist Mtn. Summit)


Table 2.1Mapped Aquifers within 1.6 km of Site

Notes: All information gathered from BC WRA (ENV 2022).


The bedrock aquifer underlying site (Aquifer 808, hydrograph illustrated in Figure 2.1) shows a strong seasonality with springtime highs (snow melt) followed by late fall/early winter lows, and a seasonal range on the order of 2 m. The long-term water level trend of this aquifer is stable.

Adjacent bedrock Aquifer 936 (Figure 2.2) also displays a strong seasonality (springtime spikes) with a seasonal range of water level fluctuation closer to 4 m. Seasonal low water levels in the aquifer have declined by approximately 1 m since 2012, but the overall water level trend over the last decade is stable.

Figure 2.1 Water Level Hydrograph - Ministry Observation Well 401 (Aquifer 808)

Well density in the area surrounding the site is fairly sparse, with most of the wells within 1km of the site either located in the valley bottom (and unconfined Aquifer 194) or at the crest of the hill (in Aquifer 808).

Reviewing wells listed on the WRA, there are 16 wells within 1km but only 14 of these are attributed to the fractured crystalline bedrock Aquifer 808 (Appendix A). Of these 14 wells, the average well depth is 400 ft, depth to bedrock ranges from 0 (bedrock at surface) to 67 ft, and well yields range from low (0.75 USgpm) to high (124 USgpm) depending on fracture connectivity and possible hydraulic connection to overlying Aquifer 194. The average driller-estimated yield of bedrock wells in the area is 19.2 USgpm.

Regional groundwater flow is inferred to be topographically driven and at this location, where groundwater flows west off the Anarchist Mountain highlands toward Osoyoos Lake. Aquifer recharge is likely comprised of direct infiltration of snowmelt and precipitation from these upland regions and surface water runoff from the several creeks originating in the Anarchist Mountain highlands to the east, including

21-090-01VR

8

the nearby Bourguiba and Haynes Creek watersheds northeast and east of the site. Groundwater use in the area is reported to be largely for rural private domestic and irrigation (orchard/vineyard) water purposes.

Five current surface water licenses and one groundwater extraction licence exist within 1km of the site (Appendix A). Four of the five surface water licences are allocated to Bourguiba Creek to the south of site, with the remaining one on Haynes Creek to the north. The surface water licences on Bourguiba Creek are for domestic water supply and stock-watering purposes. The groundwater extraction licence and the licence on Haynes Creek are for the Osoyoos Irrigation District, for irrigation (Haynes Ck.) and to be able to use WTN 95265 and extract 25,000 m³/year at a rate of up to 468 L/min (124 USgpm) from Aquifer 808 for waterworks purposes.

The Okanagan Basin Water Board (OBWB) funded the Phase 2 Okanagan Water Supply and Demand Project which developed water budgets for the Okanagan Basin. A pair of OBWB reports (OBWB 2007, 2009) summarize regional aquifer information used in their Okanagan Basin modelling efforts. Provincially mapped Aquifer 808 was given OBWB Aquifer numbers of #206B and #208A in their report, essentially splitting the aquifer into two parts: a northern part and a southern part. The southern part (OBWB Aquifer #206B) corresponds with the bedrock aquifer underneath the site, though there could be some communication between these two mapped hydrostratigraphic units at depth. Average annual precipitation for the 26.1 km² aquifer footprint is given as 1.73 X 10⁷ m³/year and annual runoff was estimated at 1.94 x 10⁶ m³/year. Allowing for evapotranspiration, estimated recharge to bedrock Aquifer #206B is 1.36 x 10⁶ m³/year.

Assuming groundwater extraction at the RDOS bylaw rate of 2,300 L/day, the groundwater extraction for the proposed development at full build-out would require 11,500 L/day on average, equivalent to an annualized water demand of 4,200 m³/year. Based on the OBWB model input projections, this groundwater withdrawal would account for approximately 0.3% of the overall estimated recharge to the bedrock aquifer in this area.

3. WELL TESTING METHODS

Value Contracting of Okanagan Falls, B.C. supplied, installed, and operated a submersible pump powered by portable generator for the pumping test program. WWAL provided input on the testing program design, general test program oversight, and water sample collection. Photographs of the pumping test set up are included in Appendix D.

The test well was disinfected with chlorine bleach solution and circulated within the well for a few minutes prior to the start of the pumping test. The pumping test on WTN 124408 was completed using a single-phase, 0.5HP submersible pump powered by a 240V portable Honda generator. The temporary submersible pump was installed on a rigid drop pipe with the pump intake set at a depth of 117.3 m (385 ft) below top of casing (btoc). The well was pumped at a rate of 8 L/min (2.1 USgpm) for 72-hours, followed by recovery monitoring.

Value Contracting collected water level measurements using a graduated water level sounder to the nearest centimeter, referenced to the top of the production casing. They also periodically measured and calibrated the pumped flow rate with a graduated bucket and stopwatch and held the flow rate constant with a control valve on the discharge line. The pumped discharge was routed approximately 30 m (100 ft) north of the well to a grassy area at the top-of-bank that sloped towards the dry unnamed stream (draw dry at the time of testing), where the discharge water was observed infiltrating to ground.

Value Contracting personnel collected a water sample for a comprehensive suite of analyses. The water sample was collected in laboratory supplied bottles directly from the discharge line near the end of the pumping test period. The sample was shipped in a cooler with ice packs via ACE Courier and arrived at CARO Analytical Laboratory in Kelowna, BC for analysis within hold times and under chain-of-custody protocol.

4. WELL TESTING RESULTS

To interpret the pumping test results, we compiled and analyzed the test data to determine whether the aquifer at the site could supply the long-term sustainable yield for the intended use.

4.1 Constant Rate Test Results

Water level data, hydrographs, and semi-log plots of drawdown over time from the constant rate test are presented in Appendix B (Table B1, Figures B1 and B2).

For WPID 124408, the water level in the well dropped approximately 6 m during the first 200 minutes of pumping, after which the rate of drawdown slowed. The pumping water level in the well continued to decline over the remainder of the 72-hour test, and never fully stabilized (Appendix B, Figure B1). After 72-hours of pumping at a rate of 8 L/min (2.1 USgpm), the well had drawn down 9.2 m (30.3 ft) relative to the pre-test static. The well recovered 61% of this drawdown within 4 hours following the end of pumping. Datalogger measurements extending the recovery period indicated the well recovered to 84% of the observed drawdown six days following the end of pumping. The testing was completed during a time when aquifer levels were naturally declining towards seasonal lows, and as such, full recovery following the test was not expected.

4.2 **Potential Well Interference**

Figure 2 shows the location of the onsite and offsite wells, relative to the property boundary. During the testing program, we used a datalogging pressure transducer to monitor the water levels in the other onsite domestic well (WTN 105407) for the drawdown portion of the testing program. Value Contracting also manually measured and recorded observed water levels in the two offsite wells (WTNs 69157 and 84786) on adjacent property 1806 Hwy 3 prior to, during and following the test. The offsite wells were monitored to assess:

- 1) Whether the onsite well is hydraulically connected to the same bedrock fracture sets these other domestic well are completed in; and
- 2) Observe and measure any well interference induced from pumping the onsite well (if any).

Figure 4.1 shows water levels in the pumped well and observation wells over the course of the pumping test and continues for several days thereafter. During the pumping tests, the homeowner at 1806 Hwy 3 continued to use their well for domestic household use, so fluctuation of the water level in observation well WTN 69157 is seen over the course of the week. From our assessment, WWAL concludes that no interference was observed in the offsite domestic wells from operation of the onsite well.

In addition to the datalogger, Value Contracting also took periodic water level measurements at the other onsite well (WTN 105407) to the south of the property while the tested well was being pumped. Water levels in this southern well did not deviate from its static water level during the entire pumping program on the northern well, further indicating a low potential for interference to occur between wells completed in the bedrock aquifer.

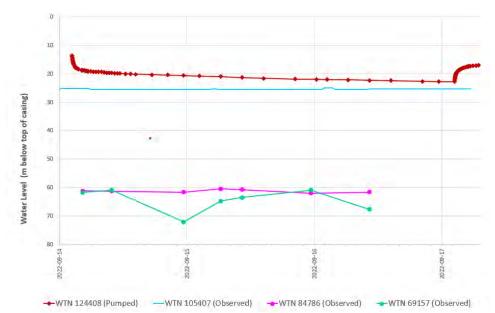


Figure 4-1Pumping and Observation Well Water Levels

With dedicated wells drilled and installed on each parcel, the average pumping rate from each well will likely be less than the aggregate pumping rate used during our testing. Consequently, the amount of induced drawdown is expected to be lower but spread out over a larger area.

4.3 Seasonal Water Level Effects

Seasonal water level fluctuations, where severe enough, can affect the ability of a well to supply the desired yield. Seasonal variations in water levels are particularly important in shallow wells and dug wells associated with nearby ephemeral streams that may not flow year-round. Seasonal water level fluctuations in confined or bedrock aquifers such as the one at the site are often muted, with fluctuation a result of snow melt recharge, as well as seasonal use of the aquifer (i.e. the irrigation season or seasonal occupancy).

In general, aquifer water levels are expected to be higher during periods of recharge (during and following spring freshet) and lower in the late summer and throughout the winter months. However, there may be a delay between when recharge starts and when the effect is seen in confined or bedrock aquifer systems.

In section 2, the three aquifers in the area are described and Figures 2.1 and 2.3 illustrate the water levels trends within each of the aquifers as observed in the Ministry Observation Wells dedicated to each aquifer.

Based on the type of aquifer the onsite wells draw from (bedrock, with weathered and fractured bedrock exposed at surface), and our conceptual understanding of the aquifer recharge in this area, seasonal water level fluctuations can be expected on the order of 2 m in the bedrock aquifer. Seasonal water level fluctuations of this magnitude are small compared to the available drawdown in the onsite and offsite wells.

4.4 Short and Long Term Well Yield

WWAL estimates the long-term sustainable yield of a well based on an industry-accepted methodology for assessing long-term well yield by applying a 30% safety factor to the available drawdown in the well and to multiply this by the specific capacity projected forward for 100-days of continuous pumping. The 30% safety factor applied is intended to account for seasonal and longer-term variations in static water levels and well interference effects. This method is outlined in the Guidelines for Obtaining a Certificate of Public Convenience and Necessity (Allen et al., 1999).

The details of the sustainable yield calculation for WTN 124408 are provided on Appendix B, Figure B2. Based on a pre-test static water level of 13.6 m (44.7 ft), the dominant water producing fracture set for the well at 36.6 m (120 ft) and a projection of the observed drawdown during the pumping test, we estimate a sustainable well yield of 7.2 L/min (1.91 USgpm) from this well. While slightly less than the tested rate of 8 L/min (2.1 USgpm), this calculation indicates that this individual well can sustainably produce water at a rate higher than the bylaw rate of 1.6 L/min (0.42 USgpm).

Further, this well was drilled to a depth of 122 m (400 ft). Based on a nominal borehole diameter of 150mm (6 inches), the amount of water stored within the well is approximately 1,977 L (522 USgal). To meet the second part of the bylaw, a flow rate of 20 L/min must be sustained for 1 hour, which equates to 1,200 L over that hour. Consequently, the amount of wellbore storage present is sufficient to meet the bylaw's short-term yield requirement.

4.5 Aquifer Yield and Future Well Location Considerations

WWAL concludes the bedrock aquifer underlying the site is capable of producing groundwater at a rate that would satisfy the RDOS Subdivision Servicing Bylaw's long-term requirement (11,500 L/day for five lots). The short-term peak flow bylaw requirement of 20 L/min for one hour can be met in the tested well through borehole and pump installed at a suitable depth.

Subsequent wells on proposed Lots 1, 2, 3 and 4 should be located 30 m away from any potential sources of contamination (such as septic fields or tanks), including any on the neighbouring property to the north (1806 Hwy 3). We recommend that septic feasibility on each proposed lot be confirmed, and a primary and reserve septic field be established prior to drilling the remaining required wells.

Wells should be spaced such that wells are at least 30 m apart to minimize well interference effects. The *Water Sustainability Act* requires a minimum horizontal separation between wells on adjacent properties of 15 m.

WTN 105407 is located on proposed common property based on the subdivision concept drawing provided and not allocated to servicing any particular lot. This well should be held in reserve, should the test well on any of the proposed lots prove insufficient to meet the bylaw rate. An easement to WTN 105407 could then be established, linking the well to the property on which it is to serve.

5. WATER QUALITY

All laboratory water testing was completed by CARO Analytical Laboratory of Kelowna, BC, a CALA accredited laboratory. Our sample was analyzed for a comprehensive list of analytes for drinking water sources. Table 5.1 summarizes the water quality testing results, with complete laboratory reports provided as an attachment (Appendix C).

When compared to the Guidelines for Canadian Drinking Water Quality (Health Canada 2022), the raw water from WTN 124402 is considered **potable**, as it meets both the health-based Maximum Acceptable Concentrations (MACs) and the aesthetic (taste and odour) Aesthetic Objective (AO) concentrations for all of the analytes tested.

The groundwater is considered very hard, with a hardness (as $CaCO_3$) concentration of 250 mg/L. This is typical for aquifers in the area and groundwater with a longer residence time in the subsurface, where water-rock interactions can mineralize the water. Water chemistry was not available from the Ministry observation well OW 401 (located in Aquifer 808) for comparison.

The well was disinfected by shock-chlorination (dosed with granular chlorine crystals) prior to sample collection to prevent potential for sampling bias from stagnant water sitting in the well or discharge lines. Bacteriological parameters including total coliforms and *E. Coli* were below detection limits in the collected samples.

Concentrations of water quality parameters typically associated with anthropogenic impacts on groundwater such as agricultural activities or wastewater disposal-to-ground were all relatively low and all below guidelines. We note that nitrate, measured at a concentration of 3.19 mg/L, is elevated above background typical groundwater levels and suggestive of anthropogenic impacts, the source of which is not clear.

Parameters	Units	1750 Highway 3 September 15, 2022	GCDWQ
	General Parar	neters	
Hardness, Total (as CaCO3)	mg/L	250	n/a
Solids, Total Dissolved (calc)	mg/L	335	AO<=500
Colour, True	CU	<5.0	AO<=15
Alkalinity, Total (as CaCO3)	mg/L	286	n/a
Cyanide, Total	mg/L	<0.0020	MAC=0.2
Turbidity	NTU	<0.10	0G<1
рН	pH units	8.25	7.0-10.5
Conductivity (EC)	uS/cm	546	n/a
	Anions		
Fluoride	mg/L	0.19	MAC = 1.5
Nitrate, N	mg/L	3.19	MAC =10
Nitrite, N	mg/L	<0.010	MAC = 1
Chloride	mg/L	12.9	AO ≤ 250
Sulfate	mg/L	18.6	AO ≤ 500
	Total Meta	als	
Aluminum	mg/L	0.0073	MAC = 2.9
Antimony	mg/L	<0.00020	MAC = 0.006
Arsenic	mg/L	<0.00050	MAC = 0.01
Barium	mg/L	0.0061	MAC = 2
Boron	mg/L	<0.0500	MAC = 5
Cadmium	mg/L	<0.000010	MAC = 0.005
Calcium	mg/L	74.9	n/a
Chromium	mg/L	0.0008	MAC = 0.05
Cobalt	mg/L	<0.00010	n/a
C		0.00135	MAC = 2
Copper	mg/L	0.00125	A0 ≤ 1
Iron	mg/L	0.013	AO ≤ 0.3
Lead	mg/L	<0.00020	MAC = 0.005
Magnesium	mg/L	15.1	n/a
		0.0005	MAC = 0.12
Manganese	mg/L	0.0005	AO ≤ 0.02
Mercury	mg/L	<0.000010	MAC=0.001
Molybdenum	mg/L	0.00336	n/a
Nickel	mg/L	<0.00040	n/a
Potassium	mg/L	4.47	n/a
Selenium	mg/L	<0.00050	MAC = 0.05
Sodium	mg/L	20.2	AO ≤ 200
Strontium	mg/L	0.329	MAC = 7
Uranium	mg/L	0.00999	MAC = 0.02
Zinc	mg/L	<0.0040	AO ≤ 5
	Bacteriolog	ical	
Total Coliforms	CFU/100mL	<1	MAC = non-detect
E. Coli	CFU/100mL	<1	MAC = non-detect

Water Quality Summary Table 5.1

Notes: MAC = Maximum Allowable Concentration (highlighted orange if above guideline);

AO = Aesthetic Objective (highlighted green if above guideline);

OG = Operational Guideline, for water treatment plants.

6. SOURCE WATER PROTECTION CONSIDERATIONS

As the vicinity of the site is largely undeveloped, overall current risk to the wells is considered low. The three main issues to consider in developing a source water protection plan for the wells are as follows:

- Historical land uses and potential water quality impacts to the aquifer;
- Location of proposed onsite and existing offsite septic fields relative to the wells;
- Nature of the aquifer; and

We reviewed the historical land use at the site (undeveloped, greenfield) and found no evidence of potential for groundwater impact from former land use activities. If blasting occurred onsite during the installation of the access road, this could account for the presence of nitrate in the water.

The primary risk factors after site development will be the proposed septic disposal fields, which are planned to be installed outside of the setback (> 30 m) from the wells. No dwellings or structures should be constructed within 6 m of either well.

Information from well logs in the vicinity suggest the upper contact of the bedrock aquifer has the potential to be near surface and unconfined. Fracture sets within the bedrock that facilitate groundwater recharge may extend to surface in bedrock outcrop or faces along road cuts or ditches. Consequently, onsite disturbance and removal of surficial soils should be limited to the extent possible, and potential sources of contamination constrained such that any leakage to ground is minimized. This includes thoughtful design of the development's sewerage systems and septic fields and should be considered by septic field designers in future.

7. CONCLUSIONS

- **C1.** WWAL oversaw a pumping test conducted on an existing 150 mm (6-inch) diameter domestic water supply well (WTN 124408) on the proposed development site near Osoyoos, BC. The well is completed in bedrock aquifer 808 beneath the site to a depth of 122 m (400 ft). The well was pumped for 72-hours at a rate of 8 L/min (2.1 USgpm). No well interference was observed in other nearby wells monitored onsite during the pumping test program, and no interference was observed in the monitored offsite domestic wells. Based on the results of the testing program, we assign a sustainable well yield of 7.2 L/min (1.9 USgpm) for this well, which is more than four times the Subdivision Servicing Bylaw requirement for one well.
- **C2.** Water quality of a sample from the well was assessed and raw water is considered potable with no exceedances of health based GCDWQ Maximum Acceptable Concentrations (MAC) nor Aesthetic Objectives (AO) t. Water in the well was hard, which is typical for deep bedrock wells in this area. Nitrate in the sample collected is elevated above typical background conditions, but the source of the elevated nitrate is not apparent.
- **C3.** The RDOS Subdivision Servicing bylaw requires proof of 1) 2,300 L/day and 2) 20L/min for one hour is sustainable for each lot of a proposed subdivision. The tested well was pumped at 5x this bylaw rate to test the aquifer below by simulating the aggregate pumping of all of the wells at full

build-out. WTN 124402 meets the RDOS Subdivision Servicing requirements, and the aquifer below can supply sufficient water to meet the aggregate subdivision demand.

As this report was intended to support an OCP/rezoning application, not all wells required have been drilled to satisfy full subdivision approval. Should the rezoning be approved, at the subdivision stage wells for each proposed lot must be drilled and testing to confirm compliance with the RDOS Subdivision Servicing Bylaw will be required.

C4. The OBWB developed a water budget for several aquifers within the Okanagan Basin, and the one for this site is OBWB Aquifer #206B. Groundwater demand for the proposed subdivision represents nominally 0.3 % of annual recharge to the aquifer.

8. **RECOMMENDATIONS**

- **R1.** Based on the performance of WTN 124406 pumping at 5x the bylaw rate, and assuming the proposed OCP/rezoning amendments are approved, we recommend additional wells be drilled and tested on the remaining proposed lots (Lots 1-4) to determine site specific yields of each well and to demonstrate compliance with the RDOS Subdivision Servicing Bylaw requirements.
- **R2.** We recommend a septic system designer be engaged as early as possible to complete the onsite assessment for septic system feasibility and sizing. Given the lot density, potential for shallow bedrock at (outcrop) or near surface, and the need for offsets from drinking water wells, the constraints for onsite septic system design should be established in coordination with ongoing domestic water well development (i.e. if the surficial soils in a portion of a lot are not conducive for use in septic infiltration, this may have direct bearing on test well placement).
- **R3.** As well, the placement of future wells and sewerage system components should be coordinated with the architectural design for the proposed residences. The number of bedrooms/washrooms in the proposed residences will have a bearing on both the sewerage and water supply demands for each lot and may vary from lot to lot.
- **R4.** We recommend a minimum 30m buffer be placed about the existing wells (onsite WTNs 124408 and 125407 and offsite WTN 84786 and 69157) and any future domestic supply wells, and development within the buffer be constrained. Potential sources of contamination are to be kept outside of the buffer zones, of both onsite and offsite receptors.
- **R5.** Well completions should include provisions to allow for manual water level measurements to be collected if needed (by means of a sounding tube). We recommend that groundwater levels continue to be monitored once the wells are put into service, and during the first few years following commissioning. This would be best accomplished with a pressure transducer installed within each of the supply wells, set separately apart from the pump control switches.

Lastly, well owners and groundwater users in B.C. have important responsibilities under the various regulations that pertain to wells and groundwater use. Important information is outlined in the following section.

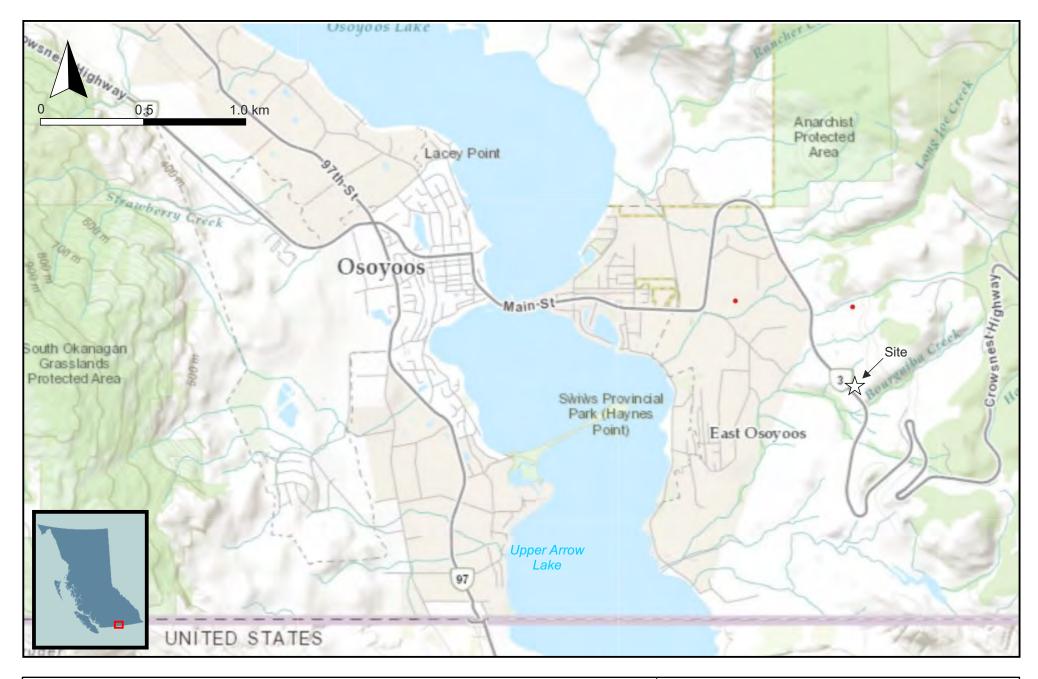
9. WELL OWNER RESPONSIBILITIES

In November 2005, the Groundwater Protection Regulation was enacted in British Columbia, intended to improve the safety and quality of groundwater in the Province. This regulation was replaced by a new Groundwater Protection Regulation on February 29, 2016 (BC Reg 29/2016) and continues previously established standards to protect groundwater supplies by requiring all water wells in British Columbia be properly constructed, maintained and, at the end of their service, properly decommissioned. More specifically, all newly constructed and altered wells must meet minimum construction standards including incorporation of a surface annular seal, a minimum of 30 cm casing stickup [above existing or modified ground surface], appropriate drainage away from the well, and completion with a secure well cap plus well identification plate. After a well is drilled, responsibility for the well transfers from the driller to the owner to maintain the casing stickup, surface drainage away from the well, secure cap and well identification plate. This also includes maintaining the surface annular seal, if a pitless adapter is installed. Part 3 of the regulation has requirements for siting wells. Part 10 requires that well construction reports for all new and altered water supply wells be submitted to the Province (prior to 2016, submission of well reports was voluntary). The regulation also requires that all work on a well, including pump installation, be completed by qualified contractors registered to practice with the Province of B.C.

With the implementation of the Water Sustainability Act in 2016, certain groundwater uses in the Province of BC now require a groundwater licence. Private domestic groundwater use (i.e. one well supplying domestic water to one household) does not require a groundwater licence, and private domestic wells are provided with a deemed water right of 2 m³/day. Permitted domestic uses include indoor domestic water, watering poultry or animals kept for household use, and irrigation of a garden up to 1,000 m² in area. Use of water beyond the volumes and purposes associated with domestic use as defined in the Water Sustainability Act require a licence which must be applied for. Regional District or other approving authority proof of water requirements for subdivision or building permit approval may exceed the 2 m³/day deemed water right for domestic use, but do not allow the well owner to exceed that deemed right without a licence. Individual well owners have the responsibility to carefully monitor their own water supplies and to use water responsibly, especially in times of drought

With regard to water quality and private well water treatment, this is the homeowner's responsibility as the Ministry of Health does not regulate private water sources.

REFERENCES


- BC Ministry of Environment (MOE). 1999. Evaluating long-term well capacity for a Certificate of Public Convenience and Necessity. Water Management Branch, B.C. Ministry of Environment, Land and Parks. Victoria.
- BC Ministry of Environment and Climate Change Strategy (ENV). 2022. Water Resources Atlas (WRA). Accessed online at: <u>http://www.env.gov.bc.ca/wsd/data_searches/wrbc/</u>
- BC Ministry of Environment and Climate Change Strategy (ENV). 2022. *iMapBC Online Database*. Accessed on-line at: <u>https://www2.gov.bc.ca/gov/content/data/geographic-data-services/web-based-mapping/imapbc</u>
- BC Ministry of Environment and Climate Change Strategy (ENV). 2021. The British Columbia Field Sampling Manual: Part E2 - Groundwater. Accessed on-line at: <u>https://www2.gov.bc.ca/assets/gov/environment/research-monitoring-and-reporting/monitoring/emre/field-manal/part_e2_groundwater.pdf</u>
- BC Ministry of Environment and Climate Change Strategy (ENV). 2022. Groundwater Level Data, Provincial Groundwater Well Network. Accessed on-line at: <u>https://governmentofbc.maps.arcgis.com/apps/webappviewer/index.html?id=b53cb0bf3f6848e79d66ffd09b74f0</u> <u>0d&find=OBS%20WELL%20402</u>
- Cui, Y., Miller, D., Schiarizza, P., and Diakow, L.J., 2017. *British Columbia digital geology*. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Open File 2017-8, 9p. Data version 2019-12-19.
- Health Canada. 2022. Guidelines for Canadian Drinking Water Quality. Accessed online at: <u>https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html</u>
- Nasmith, H. 1962. Late Glacial History and Surficial Deposits of the Okanagan Valley, British Columbia. Bulletin No. 46. Issued by the BC Department of Mines and Petroleum Resources, 1962.
- Neilson-Welch, L., & D.M. Allen (OBWB) 2007. Groundwater and Hydrogeological Conditions in the Okanagan Basin, British Columbia, A State-of-the-Basin Report. Issued by the Okanagan Basin Water Board, December 2007.
- Golder Associates & Summit Environmental Consultants Ltd. (OBWB) 2009. The Okanagan Basin Water Board Basin Study, Phase 2 Okanagan Water Supply and Demand Project, Groundwater Objectives 2 and 3. Report issued July 2009.
- Regional District of Okanagan-Similkameen (RDOS). 2022. RDOS Parcel Viewer. Accessed online at: https://maps.rdos.bc.ca/Html5Viewer/?viewer=publicparcels

Western Water Associates Ltd. Standard Report Limitations

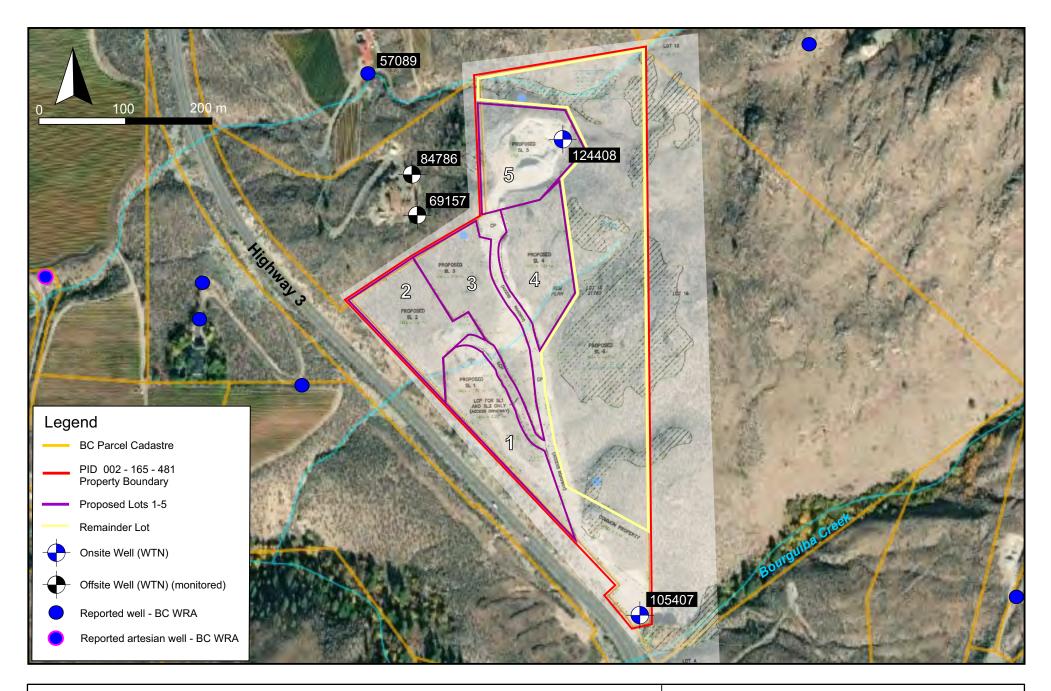
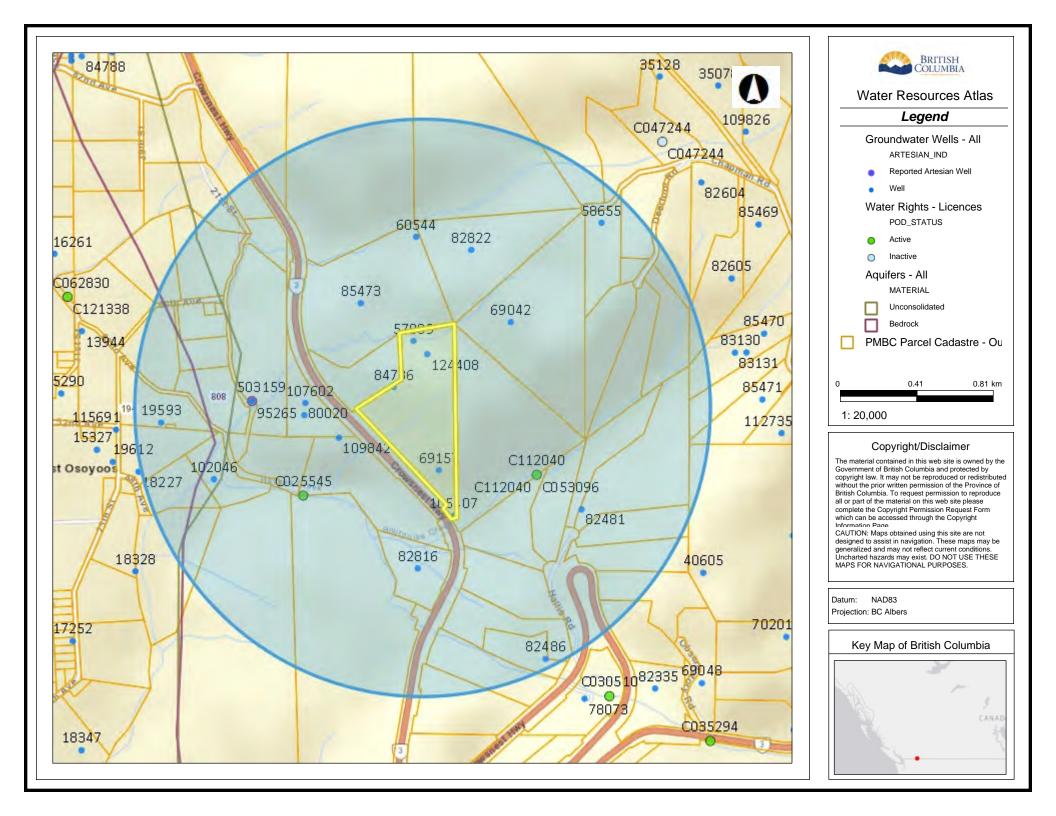
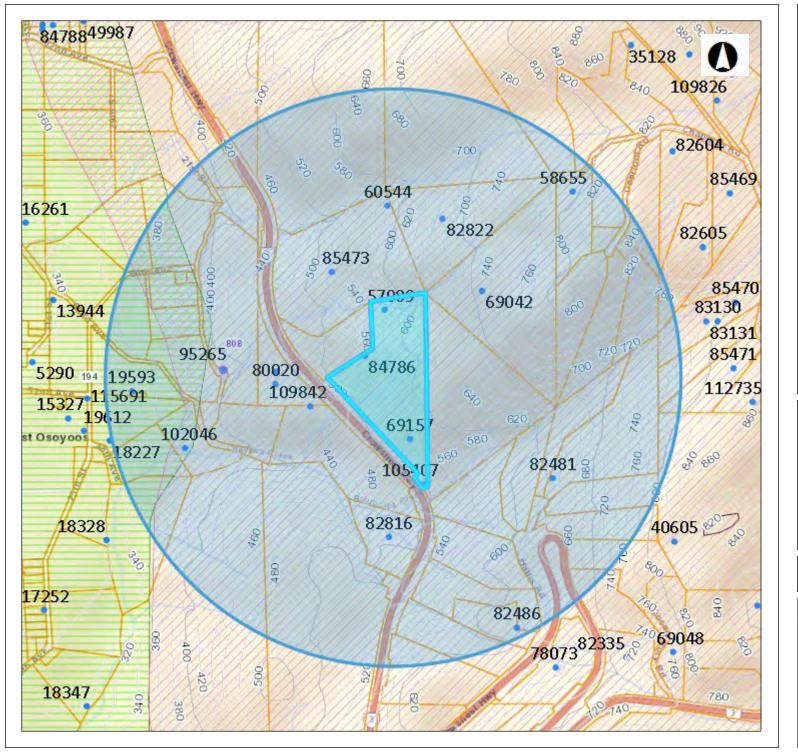
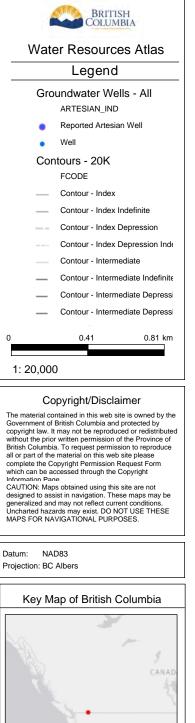

- 1. This Document has been prepared for the particular purpose outlined in the work scope that has been mutually agreed to with the Client.
- 2. The scope and the period of service provided by Western Water Associates Ltd are subject to restrictions and limitations outlined in subsequent numbered limitations.
- 3. A complete assessment of all possible conditions or circumstances that may exist at the Site or within the Study Area referenced, has not been undertaken. Therefore, if a service is not expressly indicated, it has not been provided and if a matter is not addressed, no determination has been made by Western Water Associates Ltd. in regards to it.
- 4. Conditions may exist which were undetectable given the limited nature of the enquiry that Western Water Associates Ltd. was retained to undertake with respect to the assignment. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the Site, or Study Area, which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- 5. In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Western Water Associates Ltd's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Western Water Associates Ltd to form no more than an opinion of the actual conditions of the Site, or Study Area, at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the Site, or Study Area, nor the surroundings, or any laws or regulations.
- 6. Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either expressed or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- 7. Where data supplied by the Client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated.
- 8. No responsibility is accepted by Western Water Associates Ltd for incomplete or inaccurate data supplied by others.
- 9. The Client acknowledges that Western Water Associates Ltd may have retained sub-consultants affiliated to provide Services. Western Water Associates Ltd will be fully responsible to the Client for the Services and work done by all of its sub-consultants and subcontractors. The Client agrees that it will only assert claims against and seek to recover losses, damages or other liabilities from Western Water Associates Ltd.
- 10. This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Western Water Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

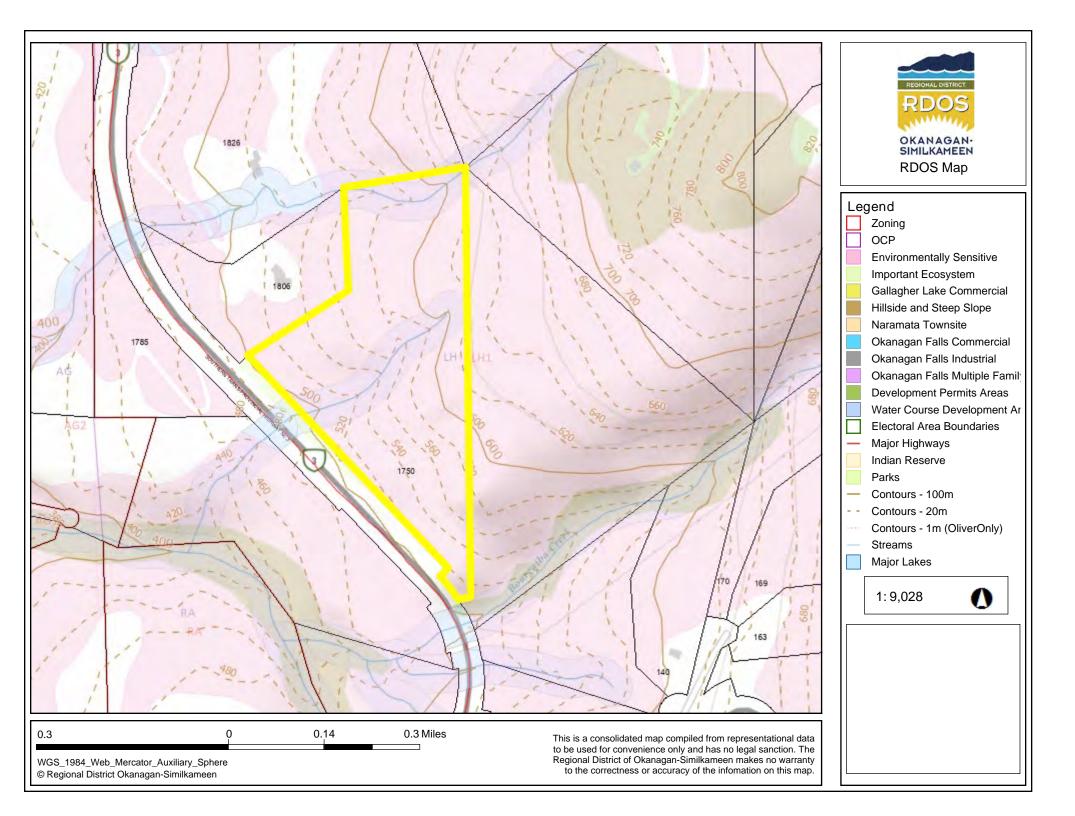
Figure 1 - Genera	I Site Location	western water A S S O C I A T E S L T D		
Date: October 21, 2022	Image: WRA 2022	Client: Steinar Johnsen	WWAL Project: 21-090-01VR	ASSOCIATES LTD
Drawn by: CDH Checked by: CDH Project: GW Feas. Ass., 5-Lot Subdivision, Osoyoos, BC				Consultants in Hydrogeology and Water Resources Management

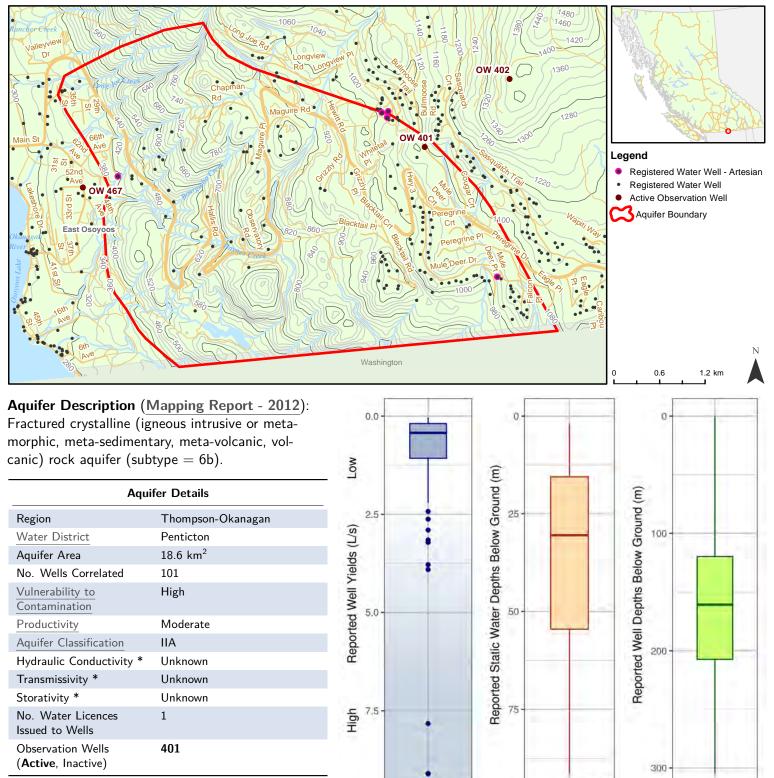



Figure 2 - Detailed	I Site Location and F	western water		
Date: September 26, 2022	Image: iMapBC 2022	Client: Steinar Johnsen	WWAL Project: 21-090-01VR	🖊 🔺 🔺 🔺 🛦 SSOCIATES LTD
Drawn by: LM	Checked by: CDH	Project: Groundwater Feasibility Assessment - Osoyoos		Consultants in Hydrogeology and Water Resources Management


Appendix A

RDOS and WRA Output and Relevant Well Logs




					Well Depth	Well Diameter	Water Depth	Bedrock Depth	Well Yield	Aquifer	Aquifer
Well Tag Number	Well ID Plate	Well Status	Well Class	Intended Water Use	(ft bgl)	(in)	(ft bgl)	(ft bgl)	(USgpm)	Material	Number
19593		New	Unknown	Unknown Well Use	38		30	l i i i i i i i i i i i i i i i i i i i	C	Unconsolidated	194
58655		New	Water Supply	Private Domestic	360		110	l.	C	Unconsolidated	194
57089		New	Water Supply	Private Domestic	490		140	C) 30) Bedrock	808
60544		New	Water Supply	Private Domestic	480		265	7	′ C) Bedrock	808
69042		New	Water Supply	Private Domestic	363	6	83	8	3 1.5	Bedrock	808
69157		New	Water Supply	Private Domestic	510	6		8	3 2.5	Bedrock	808
80020		New	Water Supply	Private Domestic	180	6.63	100	l.	50) Bedrock	808
82481		New	Unknown	Unknown Well Use	300	5.75		5	; 2	Bedrock	808
82486		New	Water Supply	Unknown Well Use	200	5.75	55	9	30	Bedrock	808
82822		New	Water Supply	Private Domestic	400	6.63	147		0.75	Bedrock	808
84786		New	Water Supply	Private Domestic	520	4.5		6	5 2	Bedrock	808
95265	30229	New	Water Supply	Water Supply System	540	6.62		67	124	Bedrock	808
102046	24083	New	Water Supply	Private Domestic	400	6.63	23	73	1.5	Bedrock	808
105407	27891	New	Water Supply	Private Domestic	180	6.63	72	33	10	Bedrock	808
109842	38628	New	Water Supply	Water Supply System	420	6.62	250	34	24	Bedrock	808
124408	62040	New	Water Supply	Private Domestic	400	6	40	18	3.5	Bedrock	808
82816		Alteration	Water Supply	Private Domestic	406	6.63			8	Unknown	808
85473		Alteration	Water Supply	Unknown Well Use	541	6	160		18	Bedrock	808
107602	34659	Alteration	Water Supply	Private Domestic	680	6.63	487	20)	Bedrock	808

POD Number	POD Subtype	POD Status	Well Tag Number		Licence Status	Purpose Use	Source Name	Quantity	Quantity Units	Quantity Diversion Max Primary Licensee Name Rate (m3/sec)
PW201907	PWD	Active	95265	503159	Current	00A - Waterworks: Local Provider	808	25000	m3/year	0.0078 Osoyoos Irrigation District (38030)
PD53942	POD	Active		C025545	Current	03A - Irrigation: Local Provider	Haynes Creek	222026.4	m3/year	Osoyoos Irrigation District (38030)
PD53944	POD	Active		C053096	Current	01A - Domestic	Bourguiba Creek	4.54609	m3/day	PRIVATE INDIVIDUAL NAME
PD53944	POD	Active		C053097	Current	01A - Domestic	Bourguiba Creek	4.54609	m3/day	PRIVATE INDIVIDUAL NAME
PD53944	POD	Active		C112040	Current	01A - Domestic	Bourguiba Creek	2.27305	m3/day	PRIVATE INDIVIDUAL NAME
PD53944	POD	Active		C112040	Current	02I31 - Livestock & Animal: Stockwatering	Bourguiba Creek	2.27305	m3/day	PRIVATE INDIVIDUAL NAME
PD53944	POD	Inactive		C068152	Cancelled	01A - Domestic	Bourguiba Creek	2.27305	m3/day	PRIVATE INDIVIDUAL NAME
PD53944	POD	Inactive		C072664	Abandoned	01A - Domestic	Bourguiba Creek	2.27305	m3/day	PRIVATE INDIVIDUAL NAME
PD53944	POD	Inactive		C053100	Abandoned	01A - Domestic	Bourguiba Creek	4.54609	m3/day	PRIVATE INDIVIDUAL NAME
PD53944	POD	Inactive		C072665	Abandoned	01A - Domestic	Bourguiba Creek	2.27305	m3/day	PRIVATE INDIVIDUAL NAME

Aquifer #808 Anarchist Mountain

* min - max

For Hydraulic Connection see guidance document

Disclaimer: Use of information from Aquifer factsheets (accessed by BC government website) is subject to limitation of liability provisions (further described on that website). That information is provided by the BC government as a public service on an "as is" basis, without warranty of any kind, whether express or implied, and its use is at your own risk. Under no circumstances will the BC government, or its staff, agents and contractors, be responsible or liable to any person or business entity, for any direct, indirect, special, incidental, consequential or any other loss or damages to any person or business entity based on this factsheet or any use of information from it.

n = 93

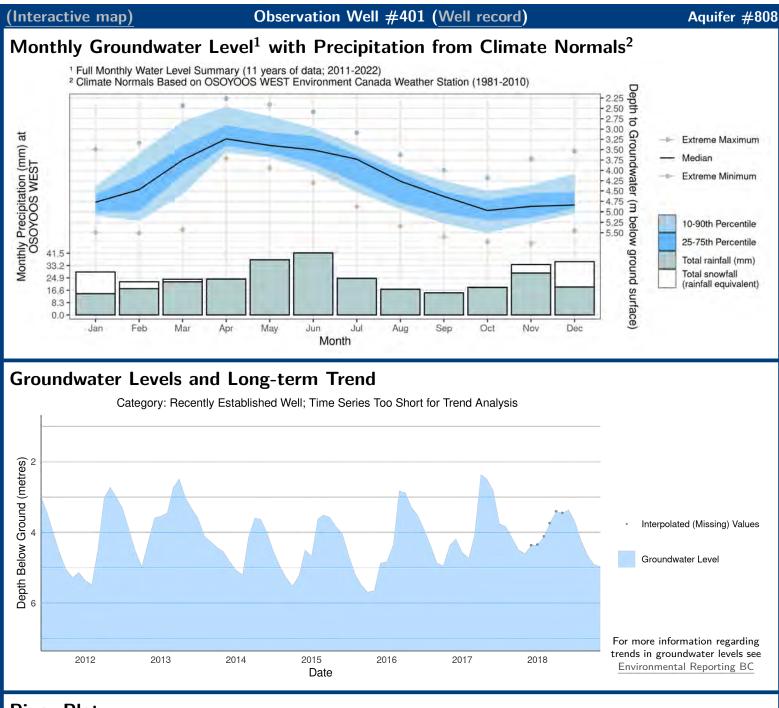
Median well yield:

0.43 L/s

n = 53

Median water depth:

30.48 m


n = 101

Median well depth;

160.93 m

Detailed methods for all figures are described in the companion document (Aquifer Factsheet - Companion Document.pdf).

Factsheet generated: 2022-07-27. Aquifers online: https://apps.nrs.gov.bc.ca/gwells/aquifers.

Piper Plot

No summary at this point

Graph not available (insufficient chemistry data)

Detailed methods for all figures are described in the companion document (Aquifer Factsheet - Companion Document.pdf)

AQUIFER CLASSIFICATION WORKSHEET

CLASSIFICATION: IIA	RANKING: 11
BCGS MAP SHEET:	082E003 and 82e004
NTS MAP SHEET:	082E03 and 082E04
DESCRIPTIVE LOCATION OF AQUIFER:	East of Osoyoos, Anarchist Mountain
AQUIFER REFERENCE NUMBER:	808
DATE:	02-Mar-12

Aquifer Size: 18.5 km²

Aquifer Boundaries:

The eastern boundary was determined using geological data and coincides with the limit of the intrusive rock group. The national border was used to delineate the southern boundary. Quarternary limits and well development extents were used for the western boundary while the northern boundary was determined using topographic information and the extent of well development. Dashed lines were used to indicate the uncertainty associated with the delineated aquifer boundary.

Aquifer Sub-type:6bCharacterized as fractured crystalline (igneous intrusive or metamorphic, meta-sedimentary,
meta-volcanic, volcanic) rock aquifers.

	Aquifer Priority	Rating for Obse	ervation Wells:	57.62
--	------------------	-----------------	-----------------	-------

Geologic Formation (overlying materials):

Approximately 30 percent of wells have silt, clay, or till material overlying the bedrock. Confining materials are generally limited to two clustered locations in the southeast portion of the aquifer where well density is higher and at several wells in the northwest section. The interlayering of confining materials with more permeable deposits appears to occur with lateral variations. Where confining materials are absent, permeable sand and gravel materials are generally present or the overburden thickness is limited. The depth of unconsolidated material overlying the bedrock ranges from 0 to 64.62 m with a median of 4.57 m and an average of 10.13 m.

Geologic Formation (aquifer):

Metamorphic rock from the Mesozoic era. The main rock types include granite and alkali

feldspar granite intrusive rocks. There is potential for the aquifer to be connected to Aquifer No. 936 located upgradient.

<u>Confined/Partially Confined/Unconfined:</u>

Vulnerability:

The thickness of the predominant confining unit above the aquifer material ranges from 0.46 to 40.54 m with a median of 4.88 m and an average of 6.53 m based on 32 well records. However, the lateral extent of the confining unit does not appear to be extensive based on available information. The bedrock aquifer material generally results in relatively quick movement of water and any accompanying contaminants. Aquifer vulnerability is considered high given that bedock is generally encountered relatively close to surface and the majority of wells do not have overlying confining sediments protecting it.

Productivity:

Reported well yields range between 0.03 to 9.10 L/s with a median of 0.43 L/s and an average of 1.17 L/s based on 93 records. Productivity is considered moderate based on a geometric mean of 0.48 L/s.

Depth to Water: Moderately Deep - Average 34.98 m The depth to water ranged from free flowing to 91.44 m with a median of 30.48 m and an average of 34.98 m based on 53 records. Artesian groundwater conditions were noted at five wells.

Direction of Groundwater Flow:

Flow components likely to the west, southwest, and south ignoring geologic complexities in the fractured bedrock and assuming groundwater will follow the topographic gradient from high elevation to low elevation.

Recharge:

Recharge to the aquifer is likely from direct infiltration of precipitation. It is noted that the aquifer is located in a dry climatic setting with an average annual precipitation of approximately 300 mm and possibly lateral inflows from Aquifer No. 8001 located upgradient.

Domestic Well Density:

Moderate – 5.03 wells/km²

The level of density was calculated at 5.03 wells/km² using wells identified for domestic and unknown uses and is considered to be moderate.

Moderate – 0.48 L/s

Partially Confined

Bedrock

High - A

Type of Water Use:Drinking WaterIt is assumed water is used primarily for private domestic and water supply system uses based

on a review of well record information and aerial photography.

Reliance on Source:

Assumed to be a local source of water supply for private domestic and water supply system uses.

<u>Conflicts between Users:</u> None documented.

Quantity Concerns: None documented.

Quality Concerns: None documented.

Comments:

References:

Bernardinucci J. and K Ronneseth, 2002. Guide to Using the BC Aquifer Classification Maps for the Protection and Management of Groundwater. BC Ministry of Water, Land and Air Protection, Water Air and Climate Change Branch, Water Protection Section.

Bostock, H.S. 1930. Surficial Geology, Keremeos Similkameen District, British Columbia, Geological Survey of Canada, Map 341A.

AQUIFER CLASSIFICATION AND RANKING

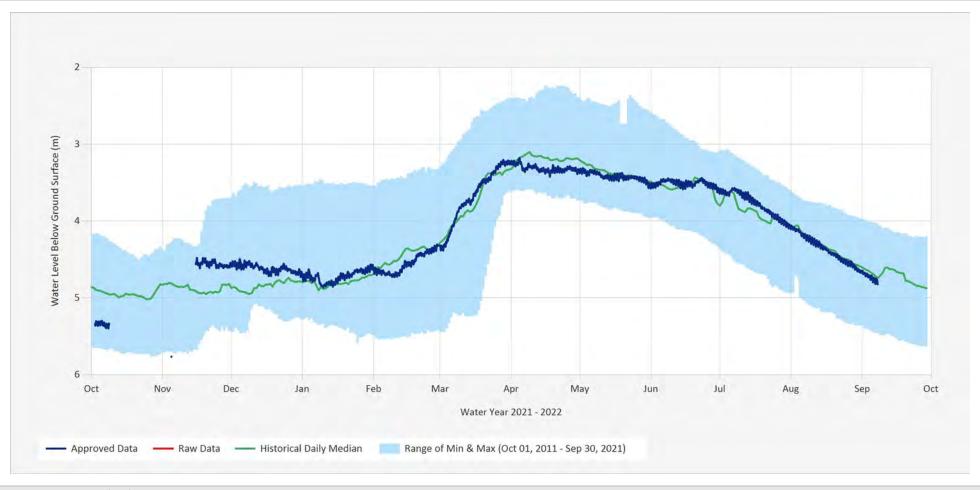
AQUIFER LOCATION:		East of Osoyoos, Anarchist Mountain				
AQUIFER REFERENCE NUMBER:		808				
AQUIFER SUB-TYPE:		6b				
AQUIFER PRIORITY RATING FOR OBSERVATION:		57.62				
CLASSIFICATION:	IIA I	RANKING:	11			
Classification Component:						
Level of Development:	Aquifer productivity is considered moderate based on well yield. Demand is considered moderate (see below). There is a moderate level of development in relation to aquifer productivity.					
Level of Vulnerability:	High level of vulnerability to surface contamination.					
Ranking Component:	<u>Ranking Value:</u>					
Productivity:		2				
Vulnerability:		3				
Size:		2				
Demand*:		2				
Type Of Use:		2				
Quality:						
Quantity:						
Total:		11				

* Demand has been assessed subjectively. Demand is based on domestic well density, the presence of several water supply system wells, and general knowledge of well use and land use in the area. Demand assumes that the reported well capacity is the amount of water used, which can be misleading. The reported well capacity is often higher than actual use.

Statistical Summary of Well Data for Aquifer # 808

Total number of wells available for statistical analysis:

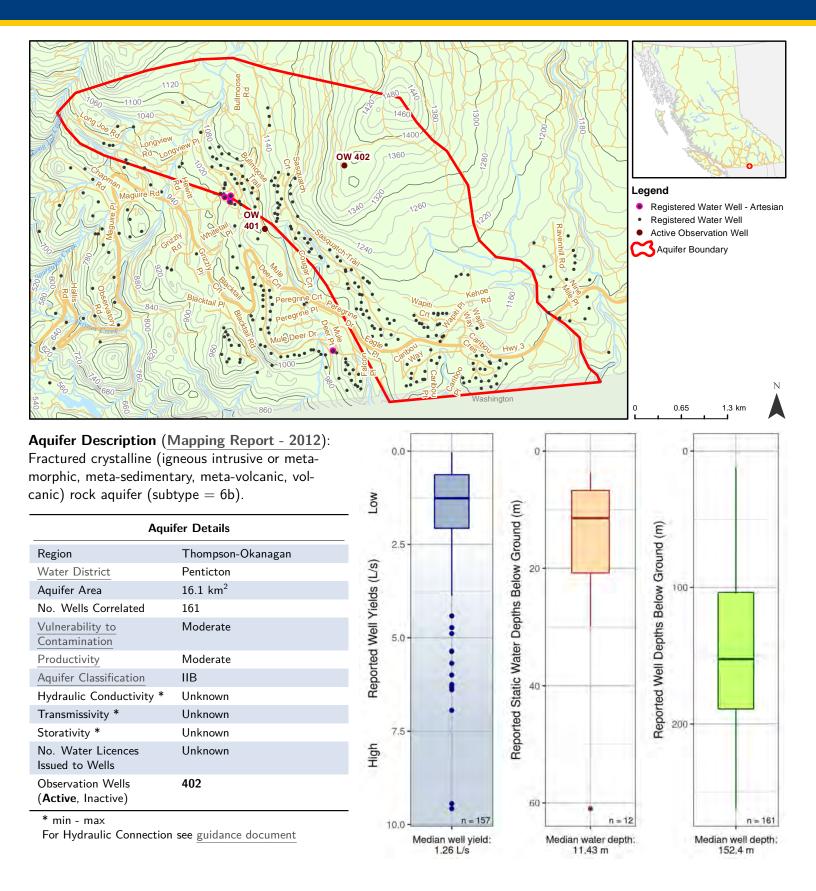
	Depth to	Well	Depth to	Reported Est.	Est. Thickness of
	Bedrock	Depth	Water	Well Yield	Confining
					Materials
	(m bgs)	(m bgs)	(m bgs)	(L/s)	(m)
Number of Wells	82	100	53	93	32
Minimum	0.00	5.49	Artesian	0.03	0.46
Maximum	64.62	304.80	91.44	9.10	40.54
Median	4.57	161.24	30.48	0.43	4.88
Average	10.13	164.78	34.98	1.17	6.53
Geometric Mean	4.88	147.54	25.08	0.48	4.12



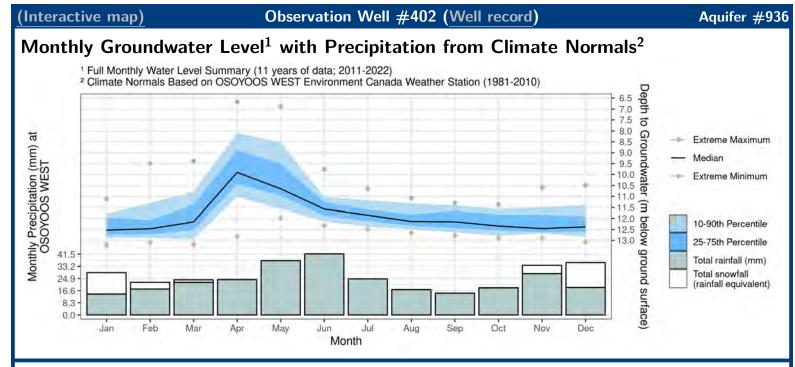
Groundwater Level Statistics Chart

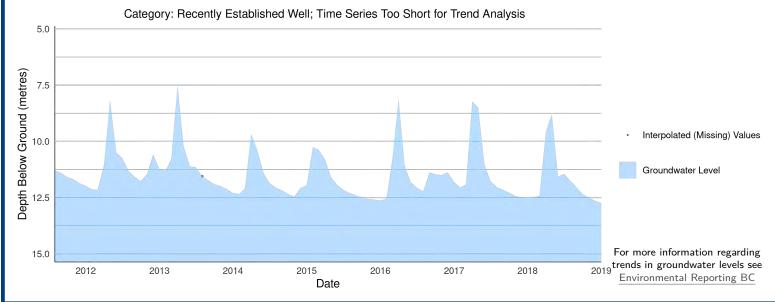
Groundwater.OW401.Groundwater Level Statistics Chart

Source Data: SGWL.Working@OW401


Location: OBS WELL 401 - OSOYOOS (BULLMOOSE RD), Latitude: 49.023341, Longitude: -119.363599, Elevation: : 0 m

The statistics (median/min/max) are based on the previous 10 years of available data prior to the current Water YearData last appended: September 7, 2022 18:29 UTC+00:00The statistics (median/min/max) are only displayed for wells with at least two years of dataThe Groundwater Level Statistics Chart is only available for Active WellsStatus: Active


Aquifer #936


Disclaimer: Use of information from Aquifer factsheets (accessed by BC government website) is subject to limitation of liability provisions (further described on that website). That information is provided by the BC government as a public service on an "as is" basis, without warranty of any kind, whether express or implied, and its use is at your own risk. Under no circumstances will the BC government, or its staff, agents and contractors, be responsible or liable to any person or business entity, for any direct, indirect, special, incidental, consequential or any other loss or damages to any person or business entity based on this factsheet or any use of information from it.

Detailed methods for all figures are described in the companion document (Aquifer Factsheet - Companion Document.pdf).

Factsheet generated: 2022-07-27. Aquifers online: https://apps.nrs.gov.bc.ca/gwells/aquifers.

Groundwater Levels and Long-term Trend

Piper Plot C/* SQ4 Ca M9 ^{4003 + 003} Bin es, S B e Ca CI

The groundwater samples are typically of the Ca-Na-Mg-SO4-HCO3 & Ca-Na-SO4 type. Ca and Na are the dominant cations, the fact that aquifer #936 is fractured bedrock aquifer, Ca the dominant cation, SO4 being the dominant anion might indicate moderately evolved/medium water-rock interaction. For EMS water chemistry data, see EMS ID E283990.

Detailed methods for all figures are described in the companion document (Aquifer Factsheet - Companion Document.pdf)

AQUIFER CLASSIFICATION WORKSHEET

<u>Aquifer Size:</u>	16.1 km ²
CLASSIFICATION: IIB	RANKING: 10
BCGS MAP SHEET:	82e004
NTS MAP SHEET:	082E04
DESCRIPTIVE LOCATION OF AQUIFER:	East of Osoyoos, Anarchist Mountain
AQUIFER REFERENCE NUMBER:	936
DATE:	02-Mar-12

Aquifer Boundaries:

The western boundary was determined using geological data and coincides with the limit of the Anarchist Schist formation. The national border was used to delineate the southern boundary while the remaining limits were determined using topographic information and the extent of well development. Dashed lines were used to indicate the uncertainty associated with the delineated aquifer boundary.

Aquifer Sub-type:

6b

Characterized as fractured crystalline (igneous intrusive or metamorphic, meta-sedimentary, meta-volcanic, volcanic) rock aquifers.

Aquifer Priority Rating for Observation Wells: 42.38

Geologic Formation (overlying materials):

Over 60 percent of wells have silt, clay, or till material overlying the bedrock. Confining materials are generally limited to several clustered locations. The interlayering of confining materials with more permeable deposits appears to occur with lateral variations. Where confining materials are absent, permeable sand and gravel materials are generally present. The depth of unconsolidated material overlying the bedrock ranges from 0 to 57.30 m with a median of 10.06 m and an average of 13.29 m.

Geologic Formation (aquifer):

Bedrock

Despite differences in geology there is potential for the aquifer to be connected to Aquifer No. 808 located down gradient.

Confined/Partially Confined/Unconfined:

Partially Confined

Vulnerability:

Medium - B

There are several clusters of wells where the aquifer appears to be confined predominantly by till and clay with some areas having silt material. The thickness of the predominant confining unit above the aquifer material ranges from 0.91 to 52.73 m with a median of 7.32 m and an average of 10.06 m based on 100 well records. The depth to bottom of the confining material ranges from 0.91 to 57.30 m with an average of 17.19 m. The overlying confining sediments are considered relatively thick but the areal extent is limited to several clustered areas. The bedrock aquifer material generally results in relatively quick movement of water and any accompanying contaminants. A moderate vulnerability has been assigned based on the presence of overlying confining sediments that are substantially thick protecting over 60 percent of the aquifer.

Productivity:

Moderate – 1.20 L/s

Reported well yields range between 0.03 to 9.57 L/s based on 157 records. Productivity is considered moderate based on a geometric mean of 1.20 L/s.

Depth to Water:

Moderately Shallow - Average 16.76 m

The depth to water ranged from free flowing to 60.96 m with a median of 11.43 m and an average of 16.76 m based on 12 records. Artesian groundwater conditions were noted at two wells.

Direction of Groundwater Flow:

Flow components likely to the west, southwest, and south ignoring geologic complexities in the fractured bedrock and assuming groundwater will follow the topographic gradient from high elevation to low elevation.

Recharge:

Recharge to the aquifer is likely from direct infiltration of precipitation. It is noted that the aquifer is located in a dry climatic setting with an average annual precipitation of approximately 300 mm.

Domestic Well Density:

Moderate – 9.8 wells/km²

The level of density was calculated at 9.8 wells/km² using wells identified for domestic and unknown uses and is considered to be moderate.

Type of Water Use:

Drinking Water

It is assumed water is used primarily for private domestic use based on a review of well record information and aerial photography.

Reliance on Source:

Assumed to be a local source of water supply primarily for private domestic use.

<u>Conflicts between Users:</u> None documented.

Quantity Concerns: None documented.

<u>Quality Concerns:</u> None documented.

Comments:

References:

Bernardinucci J. and K Ronneseth, 2002. Guide to Using the BC Aquifer Classification Maps for the Protection and Management of Groundwater. BC Ministry of Water, Land and Air Protection, Water Air and Climate Change Branch, Water Protection Section.

Bostock, H.S. 1930. Surficial Geology, Keremeos Similkameen District, British Columbia, Geological Survey of Canada, Map 341A.

AQUIFER CLASSIFICATION AND RANKING

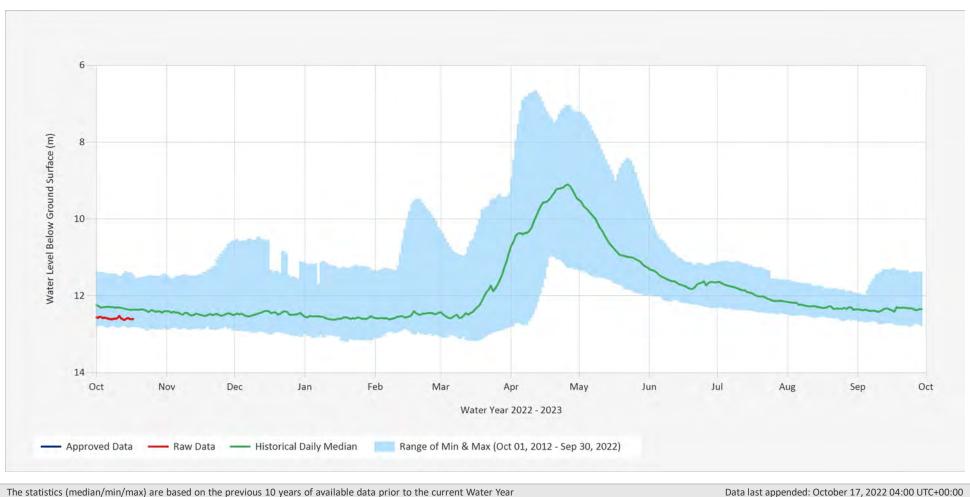
AQUIFER LOCATION:		East of Osoy	oos, Anarchist Mountain				
AQUIFER REFERENCE NUN	/IBER:	936					
AQUIFER SUB-TYPE:		6b					
AQUIFER PRIORITY RATING	G FOR OBSERVATION:	42.38					
CLASSIFICATION:	IIB F	RANKING:	10				
Classification Component:	:						
Level of Development:	Aquifer productivity is consi Demand is considered mode of development in relation t	erate (see belo	w). There is a moderate level				
Level of Vulnerability:	Moderate level of vulnerabi	ility to surface of	contamination.				
Ranking Component:	<u>Ranking Value:</u>						
Productivity:		2					
Vulnerability:		2					
Size:		2					
Demand*:		2					
Type of Use:		2					
Quality:							
Quantity:							
Total:		10					

* Demand has been assessed subjectively. Demand is based on domestic well density and general knowledge of well use and land use in the area. Demand assumes that the reported well capacity is the amount of water used, which can be misleading. The reported well capacity is often higher than actual use.

Statistical Summary of Well Data for Aquifer # 936

I otal number of wells available for statistical analysis:								
	Depth to	Well	Depth to	Reported Est.	Est. Thickness of			
	Bedrock	Depth	Water	Well Yield	Confining			
					Materials			
	(m bgs)	(m bgs)	(m bgs)	(L/s)	(m)			
Number of Wells	150	161	12	157	100			
Minimum	0.00	12.19	Artesian	0.03	0.91			
Maximum	57.30	262.13	60.96	9.57	52.73			
Median	10.06	152.40	11.43	1.26	7.32			
Average	13.29	147.70	16.76	1.78	10.06			
Geometric Mean	7.32	134.88	11.50	1.20	6.58			

Total number of wells available for statistical analysis:

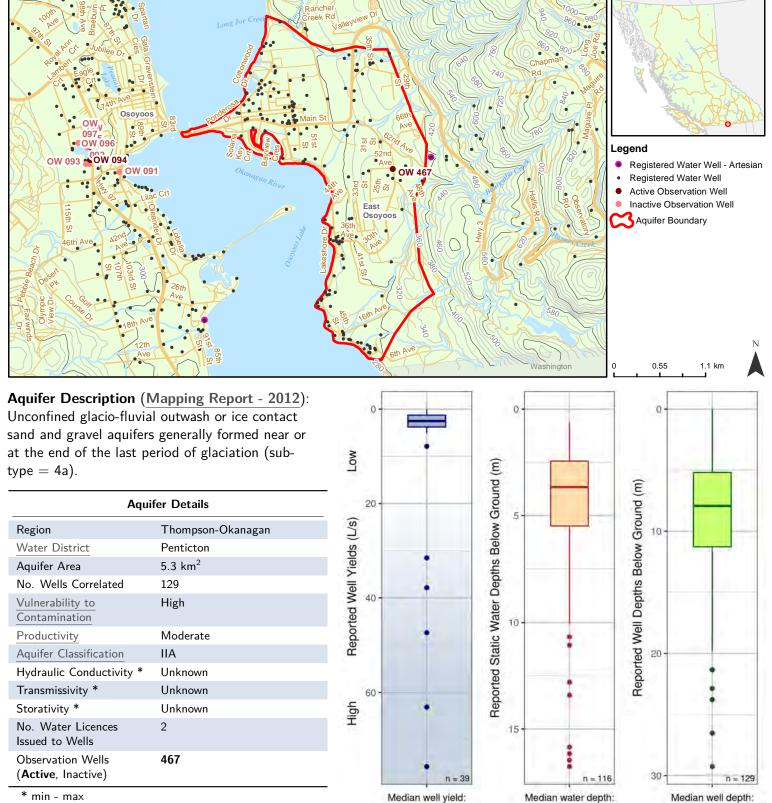


Groundwater Level Statistics Chart

Groundwater.OW402.Groundwater Level Statistics Chart

Source Data: SGWL.Working@OW402

Location: OBS WELL 402 - OSOYOOS (ANARCHIST MTN SUMMIT), Latitude: 49.030404, Longitude: -119.347269, Elevation: : 0 m



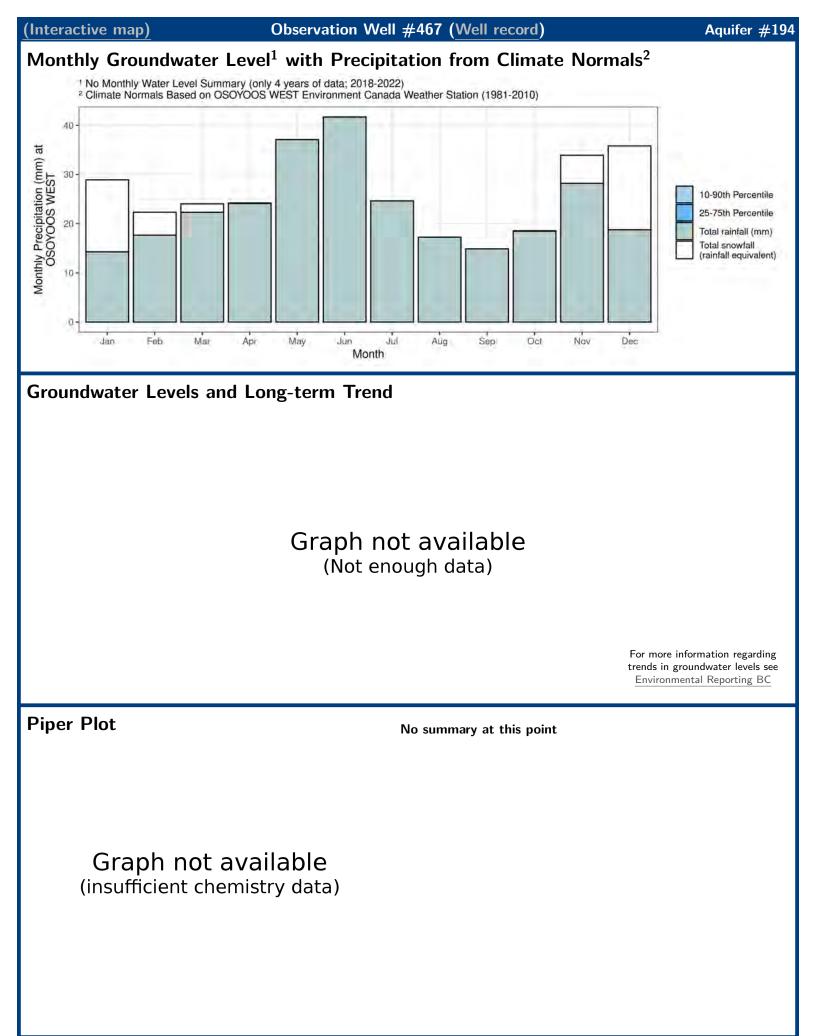
The statistics (median/min/max) are based on the previous 10 years of available data prior to the current Water Year The statistics (median/min/max) are only displayed for wells with at least two years of data The Groundwater Level Statistics Chart is only available for Active Wells Oct 17, 2022 | 1 of 1

Status: Active

Aquifer #194

* min - max

For Hydraulic Connection see guidance document


Disclaimer: Use of information from Aquifer factsheets (accessed by BC government website) is subject to limitation of liability provisions (further described on that website). That information is provided by the BC government as a public service on an "as is" basis, without warranty of any kind, whether express or implied, and its use is at your own risk. Under no circumstances will the BC government, or its staff, agents and contractors, be responsible or liable to any person or business entity, for any direct, indirect, special, incidental, consequential or any other loss or damages to any person or business entity based on this factsheet or any use of information from it.

2.52 L/s

3.66 m

7.92 m

Detailed methods for all figures are described in the companion document (Aquifer Factsheet - Companion Document.pdf). Factsheet generated: 2022-07-27. Aquifers online: https://apps.nrs.gov.bc.ca/gwells/aquifers.

Detailed methods for all figures are described in the companion document (Aquifer Factsheet - Companion Document.pdf)

AQUIFER CLASSIFICATION WORKSHEET

Aguifer Size:	5.21 km ²
CLASSIFICATION: IIA	RANKING: 15
BCGS MAP SHEET:	082E003
NTS MAP SHEET:	082E03 and 082E04
DESCRIPTIVE LOCATION OF AQUIFER:	East Osoyoos
AQUIFER REFERENCE NUMBER:	194
DATE:	28-Feb-12

Aquifer Boundaries:

Osoyoos Lake was used to define the western aquifer boundary. The eastern aquifer boundary was determined using available quarternary geology information which generally coincides with the base of mountain slopes. A solid line has been used along the western and eastern aquifer boundaries and corresponds to a high degree of certainty. The northern and southern aquifer boundaries were delineated using topographic divides and represent the probably extent of local aquifer recharge. Dashed lines were used and indicate a lesser degree of certainty.

Aquifer Sub-type:4aCharacterized as unconfined glaciofluvial outwash or ice contact sand and gravel aquifers,
generally formed near or at the end of the last period of glaciation.

Aquifer Priority Rating for Observation Wells: 73.57

Geologic Formation (overlying materials):

Recent alluvium and glacial drift (Bostock, 1940). Well records indicate overlying material ranges from fine sand to coarse gravel inferred to be deposited by melt-water streams.

<u>Geologic Formation (aquifer):</u> Sand and Gravel Predominantly sand and gravel deposits with some areas having fine sand material.

Confined/Partially Confined/Unconfined: Partially Confined

Confined over parts of the area and unconfined over others. The confining layer is generally encountered along the lake shoreline. The area along the southern half of the shoreline was

previously defined a separate aquifer (Aquifer No. 195); however, given the limited vertical extent and potential connection to the upgradient unconfined areas the two areas were lumped into a single aquifer. Some areas are confined by semi-pervious sediments that do not completely protect the aquifer from potential surface contamination. A deeper confined aquifer may exist based on a few deep wells with yield, but this was not investigated further due to the lack of information.

Vulnerability:

Aquifer vulnerability is considered high. Unconfined conditions exists where "windows" provide a potential pathway for contaminants to reach the aquifer. Where present, the predominant confining material consists of sand and fines which are considered medium permeability sediments. The confining layer thickness is relatively thin based on an average thickness of 4.57 m using lithology information from 25 well records. The average water depth is 4.43 m below ground surface based on 116 well records and is considered to be shallow.

Productivity:

Moderate - 2.81 L/s

Reported well yields show a wide range between 0.09 to 75.71 L/s based on 37 records. A median of 2.52 L/s and a geometric mean of 2.81 L/s was calculated based on the available well yield information. High capacity wells are generally located near the lake. Although some areas of the aquifer appear to be highly productive, a moderate productivity was assigned to be conservative given the geometric well yield value of less than 3.0 L/s.

Depth to Water:

Shallow – Average 4.43 m

The depth to water ranged from free flowing to 16.76 m with a median of 3.66 m and an average of 4.43 m based on 116 records. One well (Well Tag Number 16263) was noted as being artesian and is located near the base of the mountain slope.

Direction of Groundwater Flow:

Likely east to west from inland at higher elevation towards Osoyoos Lake.

Recharge:

Recharge to the aquifer is from direct infiltration of precipitation and irrigation water. It is noted that the aquifer is located in a dry climatic setting with an average annual precipitation of approximately 300 mm. High capacity wells near Osoyoos Lake are recharged by the lake.

Domestic Well Density:

Moderate – 23 wells/km²

The level of density was calculated at 23 wells/km² using wells identified for domestic and unknown uses. It is believed that many of the wells located inland are abandoned or used for garden use only since owners have chosen to hook up to a water supply system; therefore, the domestic well density is considered to be moderate. It is understood that a majority of the residents located along the Osoyoos lake shoreline, however, still utilize their dug wells for domestic purposes.

High - A

Type of Water Use:

Multiple Uses

Primarily private domestic use but groundwater is also used for municipal water systems (i.e., Town of Osoyoos), commercial (i.e., campgrounds, local resorts, motel) and irrigation purposes.

Reliance on Source:

Local source of drinking water supply for individual domestic and municipal systems. Also used for irrigation and commercial purposes.

Conflicts between Users:

None documented.

Quantity Concerns:

None documented. Groundwater levels do not show any long term declining trends, indicating good potential for further groundwater development (Groundwater Resources of British Columbia).

Quality Concerns:

Reported groundwater concerns include high nitrate levels (>10 mg/L) possibly from septic tank effluent or fertilizer application (Groundwater Resources of British Columbia). Nitrate studies in the area have been ongoing since 1985. Two well records also indicate high levels of iron.

Comments:

References:

Bernardinucci J. and K Ronneseth, 2002. Guide to Using the BC Aquifer Classification Maps for the Protection and Management of Groundwater. BC Ministry of Water, Land and Air Protection, Water Air and Climate Change Branch, Water Protection Section.

British Columbia Ministry of Environment. Ground Water Resources of British Columbia. <u>http://www.env.gov.bc.ca/wsd/plan_protect_sustain/groundwater/gwbc/index.html</u> accessed on February 29, 2012.

Bostock, H.S. 1940. Surficial Geology, Keremeos Similkameen District, British Columbia, Geological Survey of Canada, Map 341A.

AQUIFER CLASSIFICATION AND RANKING

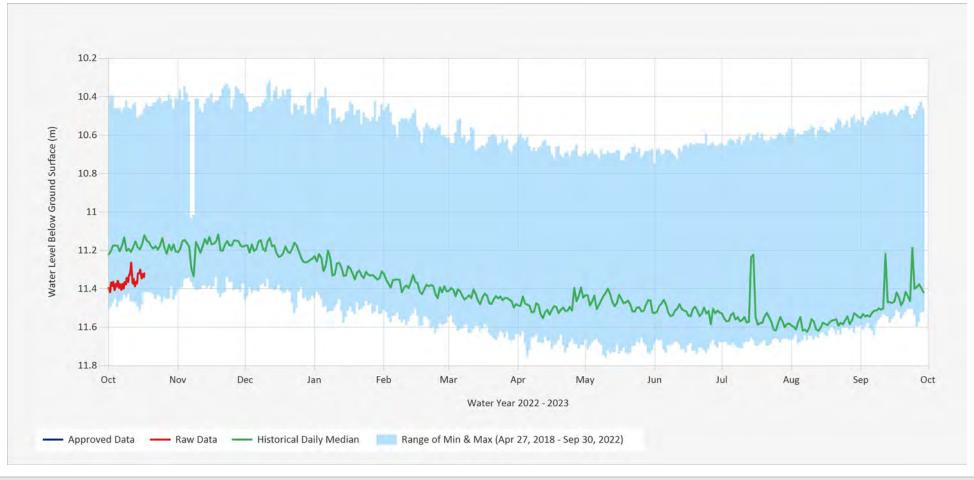
AQUIFER LOCATION:		East Osoyoo	S
AQUIFER REFERENCE NUM	MBER:	194	
AQUIFER SUB-TYPE:		4a	
AQUIFER PRIORITY RATIN	G FOR OBSERVATION:	73.57	
CLASSIFICATION:	IIA	RANKING:	15
Classification Component	:		
Level of Development:	Moderate level of develop	ment in relatior	n to aquifer productivity.
Level of Vulnerability:	High level of vulnerability t	o surface conta	mination.
Ranking Component:	<u>Ranking Value:</u>		
Productivity:		2	
Vulnerability:		3	
Size:		2	
Demand*:		2	
Type Of Use:		3	
Quality:		3	
Quantity:			
Total:		15	

* Demand has been assessed subjectively. Demand is based on domestic well density, presence of several municipal supply wells with yields up to 75 L/s, and general knowledge of well use and land use in the area. Demand assumes that the reported well capacity is the amount of water used, which can be misleading. The reported well capacity is often higher than actual use.

Statistical Summary of Well Data for Aquifer # 194

Total number of wells available for statistical analysis:

	Depth to	Well	Depth to	Reported Est.	Est. Thickness of
	Bedrock	Depth	Water	Well Yield	Confining Materials
	(m bgs)	(m bgs)	(m bgs)	(L/s)	(m)
Number of Wells	0	130	116	37	25
Minimum	-	1.83	Artesian	0.09	1.22
Maximum	-	29.26	16.76	75.71	13.71
Median	-	7.77	3.66	2.52	3.05
Average	-	8.71	4.43	10.57	4.57
Geometric Mean	-	7.38	3.53	2.81	3.59


Oct 17, 2022 | 1 of 1

Groundwater Level Statistics Chart

Groundwater.OW467.Groundwater Level Statistics Chart

Source Data: SGWL.Working@OW467

Location: OBS WELL 467 - OSOYOOS EAST (52ND AVE AND 25TH ST), Latitude: 49.022315, Longitude: -119.425509, Elevation: : 347.54 m

The statistics (median/min/max) are based on the previous 10 years of available data prior to the current Water Year The statistics (median/min/max) are only displayed for wells with at least two years of data The Groundwater Level Statistics Chart is only available for Active Wells Data last appended: October 16, 2022 23:00 UTC+00:00

Status: Active

							WTN 12	24408
BRITIS COLUM The Best Place	BIA	Ministry of Environment	Well Construction Rep Well Closure Report	Stamp compa phone/fax/emi	ny name/address/ all here, if desired.	Ministry We	ell ID Plate Number:	attached
			im mandatory information. Se		definitions of abbr		well construction report	attached
Owner na	ame:	STEING	r Johnsen.					-
Mailing a	ddress:	103-245	To Radio Tower Rd	Town Olive			Postal Code	HITI .
-		otion: Lot	ress: Street no Street Plan D.L.		Sec	Town	Rg. Land Dist	trict
			and Description of well location			_ 1009	ng Land Dis	
	7	had \$3	119	· · · · / ////		100000		
see note		100 77	and UTM Easting: 119 UTM Northing: 49	· OL. 486m	n or Latitude	(see note 4):	-	
			dual rotary cable tool	mud rotary auger	□ driving □ jet	ing Dother		
		ell: Qvertical						
			ed water use: S private domestic		irrigation	omes[10	athor (apositiv):	
						cial of industrial	Li other (spechy).	
	jic des	Surficial Mate	notes 8-13) or closure desc	Colour		ater Content	Observation	
							Observation (e.g. other geological	materials
		clay/s med	Sand, med-coarse Sand with gravel Silfstone/shale Sandstone Conglomerate Limestone Basalt Volcanic Cyrstalline Dedroc Suficial/		Dark Grey Very Hard Hard Dense/Stiff Loose Dry Moiset	ation ole	(e.g. boulders), est. wa flow (USgpm), or clos	
From	То	y id with id. fine	ld, med atone/ stone/ dstone dstone estone estone alt sanic stalline er Surf	Red Orange Brown Tan Light Grey Blue Green	Dark Grey Very Hard Hard Dense/Stiff Loose Dry Moist	Wet High Production Lost circulation Not Available		
ft (bgl)	ft (bgl)	Clar Silt Silt Sar) San) San) Silt) San) San) San) San) San) San) San) San) San) San) Red Dra Bro Tan Ligh Blue Gree	Very Very Harr Den Loo Dry Dry	Wet High Lost Not	1.0.11	-
0	18 40	THE STATEMENT PRODUCTS AND ADDRESS OF ADDRESS OF	$\bigcirc \bigcirc $	00000000		The second se	+ Boulders	
40	180	and the second second second second	000000000000000000000000000000000000000				Black whits	stabs
		00000	0000000000	00000000	000000	00000	Voids	Sur
180	400	00000		00000000		00000	Black and	white,
		00000	0000000000	00000000	000000	0000	100' Trucs	water
		00000			and a construction of the second seco			
		00000	000000000000	00000000		0000	180 31/26	pm.
	1	00000	00000000000	00000000		00000	1	
Casing					details			
From ft (bgl)	To ft (bgl		sing Material/Open Hole Wall (see note 17) Thickness in	Drive From Shoe ft (bgl)			Type (see note 18)	Slot Size
0	40	6 5	57851 .219	V				
				non-non-non-non-non-non-				
						10100 (0.000) (0.000)		
Surface s	eal: Typ	BENTON	te Depth: 4	ft Intake:	□ Screen □ Op	pen bottom	Uncased hole	E.
		tion: R Poured			type: Telescope	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
Backfill: T		Other (specify):	Depth:				stic Other (specify)	
Diameter:					bottom: Bail		tted Perforated pipe te Other (specify)	
rom: D	ft (bgl)	ToHODIt (bgl) F	Perforated: From 340t (bgl) To		ck: From:ft			i
				Type an	d size of material:			
Develop					ell completion of	and the second second		le cat
Air lifting Other (spe	7	Surging D Je	etting Dumping Dail Total duration:		pth drilled: 400		ed well depth: 400	
lotes:				SWL:	110		ated well yield: 3 1/2	ft (bg
		nated by:		Artesian	flow:	USgpr	m, or Artesian pressure	e:
Pumpin Rate:	g 🏘	Air lifting DB	ailing Other (specify): Duration:		well cap: VEnts		isinfected: Yes DN	D
	re test:	ft (btoc)			vell ID plate is attac osure informatic		asing	
Obvious	water	quality charac			for closure:	1		
Fresh	Sa	Ity Clear	Cloudy Sediment	Gas Method	of closure: D Poure	d CPumped		

Casing o		0000				0				
1000		Die	- O			Screen o				
From ft (bgl)	To ft (bgl)	Dia in	Casing Material/Open (see note 17)	Hole Wall Thickness in	Drive Shoe	From ft (bgl)	To ft (bgl)	Dia In	Type (see note 18)	Slot Siz
0	40	6	STEEL	.219	V					Let with-
								\sim		
		general a teneral a teneral								
		A	+		-	-				-
		-	bnite	Depth: 40		Intake:		□ Open b	ottom Uncased hole	
		n: Pour	red Pumped	Thickness: 2		Screen typ	-		Pipe size	
Backfill: Ty	vpe: PVC □Ot	thor /	olf du	Depth:	ft				el D Plastic D Other (specify)	
			in Thickness:	250					slot Slotted Perforated pipe	
				. 650			ttom.	Bail 🗆 Pluc	Plate Other (specify):	
	ft (hal) Ta	HTA IL	Destauted Front	\$/h	in					
From: 0	ft (bgl) To.	tcoit (b	gl) Perforated: From	560t (bgl) To4		Filter pack	: From:	ft To:	ft Thickness:	
		400 fit (b)	gl) Perforated: From	360t (bgl) To4			: From:	ft To:		
		ft (b	gl) Perforated: From	560 t (bgl) To 4		Filter pack Type and Final we	:: From: size of mai	ft To: terial:	ft Thickness:	
Develope Air lifting	ed by: g ⊡ Su	rging		sign (bgl) To	KCR (bgl)	Filter pack Type and s Final we Total depti	:: From: size of main ill complet in drilled:	terial:	ft Thickness:	
Develope Air lifting Other (spe	ed by:	rging	□ Jetting □ Pu		KCR (bgl)	Filter pack Type and a Final we Total depti Final stick	Il complete n drilled:	ft To: terial:	ft Thickness:)ft (b
Develope Air lifting Other (spe Notes:	ed by: g □ Su acify):	rging	□ Jetting □ Pu	Imping 🗆 Baili	KCA (bgl)	Filter pack Type and s Final we Total depti	Il complete n drilled:	terial:	ft Thickness:)ft (b ft (b
Develope SAir lifting Other (spe Notes: Well yiel	ed by: g □Su acify): d estimat	rging	□ Jetting □ Pu Total	umping	KCA (bgl)	Filter pack Type and a Final we Total depti Final stick SWL:	I completed for the second sec	ft To:_ terial: too data: too ft	ft Thickness: Finished well depth: 400 Depth to bedrock: 18 Estimated well yield: 3 1/2 USgpm, or Artesian pressure	ft (b ft (b ft (b USgp
Develope Air lifting Other (spe Notes: Well yiele Pumping	ed by: g □Su acify): d estimat	rging ted by: lifting	□ Jetting □ Pu Total	umping	KCA (bgl)	Filter pack Type and a Final we Total dept Final stick SWL:	I From:	terial: too data: too fi fight fi ft (btoc)	ft Thickness:	ft (b ft (b ft (b USgp
Develope Air lifting Other (spe Notes: Well yield Pumping Rate:	ed by: g □ Su ecify): d estimat g ৡAir	rging ted by: lifting US	Jetting Pu Total Bailing Othe Sgpm Duration:	umping	nghrshrs	Filter pack Type and a Final we Total deptil Final stick SWL: Artesian fil Type of we Where we	:: From: size of mat II completed up: 15 up: 15 to up: 15 to	ft To:_ terial: too data: too ft ft (btoc) ft (btoc)	ft Thickness: Finished well depth: 400 Depth to bedrock: 18 Estimated well yield: 3 1/2 USgpm, or Artesian pressure	ft (b ft (b ft (b USgp
Develope Air lifting Other (spe Notes: Well yiel Pumping Rate: SWL befor	ed by: g □ Su ecify): d estimat g 译 Air re test:	rging ted by: lifting US ft (li	□ Jetting □ Pu Total □ Bailing □ Othe Sgpm Duration: btoc) Pumping wa	umping	hrs	Filter pack Type and a Final we Total dept Final stick SWL: Artesian fil Type of we Where we Well close	:: From: size of mat Il complet drilled: up: 15 if ow: ell cap: il ID plate i sure infor	ft To:_ terial: too data: too ft teriat ft (btoc) ft (btoc) ft (btoc) ft attached: rmation:	ft Thickness:	ft (b ft (b ft (b USgp
Develope Air lifting Other (spe Notes: Well yiel Pumping Rate: SWL befor Obvious	ed by: g □ Su ecify): d estimat g ଢ Air re test: water qu	rging lifting US ft (t rality ch	□ Jetting □ Pu Total □ Bailing □ Othe Sgpm Duration: _ btoc) Pumping wa	umping	kcck (bgl) ng hrs hrs ft (btoc)	Filter pack Type and a Final we Total depth Final stick SWL: Artesian flu Type of we Where we Well close Reason fo	I complete and drilled: up: 15 up:	ft To:_ terial: too data: too f ft (btoc) ft (btoc) ft (btoc) s attached: rmation:	ft Thickness: Finished well depth: 400 Depth to bedrock: 18 Estimated well yield: 3 1/2 USgpm, or Artesian pressure Well disinfected: Yes Dive To Casing	ft (b ft (b ft (b USgp
Develope Air lifting Other (spe Notes: Well yield Pumping Rate: SWL befor Obvious	ed by: g Su ecify):	rging lifting US ft (t rality ch	□ Jetting □ Pu Total □ Bailing □ Othe Sgpm Duration: btoc) Pumping wa paracteristics: Clear □ Cloudy	umping Baili duration: er (specify): ater level: Sediment	kcck (bgl) ng hrs hrs ft (btoc) Gas	Filter pack Type and a Final we Total deptil Final stick SWL: 4 Artesian fil Type of we Where we Well clos Reason fo Method of	:: From:	ft To:_ terial: too data: too ft ft (btoc) ft (btoc) ft (btoc) s attached: rmation:	ft Thickness: Finished well depth: 400 Depth to bedrock: 18 Estimated well yield: 3 1/2 USgpm, or Artesian pressure Well disinfected: Yes D No To Casing	ft (b)
Develope Air lifting Other (spe Notes: Well yield Pumping Rate: SWL befor Obvious Fresh Colour/odd	ed by: g □ Su actify): d estimat g ¥ Air re test: water qu □ Salty our:	rging ted by: lifting US ft (t rality ch	Jetting Pu Total Bailing Othe Sgpm Duration: btoc) Pumping wa bracteristics: Clear Cloudy V	umping	kcck (bgl) ng hrs hrs ft (btoc) Gas	Filter pack Type and a Final we Total dept Final stick SWL: 4 Artesian file Type of we Where we Well close Reason fo Method of Sealant ma	:: From: size of mat Il complet drilled: up: 15 ow: ell cap: 16 ow: ell cap: 16 in closure: c	ft To:_ terial: too data: too ft ft (btoc) ft	ft Thickness: Finished well depth: 400 Depth to bedrock: 18 Estimated well yield: 3 1/2 USgpm, or Artesian pressure Well disinfected: Yes Dive To Casing	ft (b)
Develope Air lifting Other (spe Notes: Well yiel Pumping Rate: SWL befor Obvious Fresh Colour/odd	ed by: g Su gecify):	rging lifting US ft (i lality ch Second	□ Jetting □ Pu Total □ Bailing □ Othe Sgpm Duration: btoc) Pumping wa paracteristics: Clear □ Cloudy V	umping Baili duration: er (specify): ater level: Sediment Vater sample co	kcck (bgl) ng hrs hrs ft (btoc) Gas	Filter pack Type and a Final we Total dept Final stick SWL: 4 Artesian file Type of we Where we Well close Reason fo Method of Sealant ma	:: From: size of mat Il complet drilled: up: 15 ow: ell cap: 16 ow: ell cap: 16 in closure: c	ft To:_ terial: too data: too ft ft (btoc) ft (btoc) ft (btoc) s attached: rmation:	ft Thickness: Finished well depth: 400 Depth to bedrock: 18 Estimated well yield: 3 1/2 USgpm, or Artesian pressure Well disinfected: Yes D No To Casing	ft (b)
Develope Air lifting Other (spe Notes: Well yiel Pumping Rate: SWL befor Obvious Fresh Colour/odd Well drill Name (firs	ed by: g Su gecify):	rging lifting US ft (i sality ch selearly): se note 19	Jetting Pu Total Bailing Othe Sgpm Duration: btoc) Pumping wa paracteristics: Clear Cloudy V 9): Walter	umping Baili duration: er (specify): ater level: Sediment Vater sample co	kcck (bgl) ng hrs hrs ft (btoc) Gas	Filter pack Type and a Final we Total dept Final stick SWL: 4 Artesian file Type of we Where we Well close Reason fo Method of Sealant ma	:: From: size of mat Il complet drilled: up: 15 ow: ell cap: 16 ow: ell cap: 16 in closure: c	ft To:_ terial: too data: too ft ft (btoc) ft	ft Thickness: Finished well depth: 400 Depth to bedrock: 18 Estimated well yield: 3 1/2 USgpm, or Artesian pressure Well disinfected: Yes D No To Casing	ft (b)
Develope Air lifting Other (spe Notes: Well yiel Pumping Rate: SWL befor Obvious Fresh Colour/odd Well drill Name (firs Registratio	ed by: g Su acify): d estimat g F Air re test: water qu Salty bur: bur: ter (print c st, last) (see on no. (see	rging ted by: lifting US ift (t sality ch C clearly): te note 19 note 20):	Jetting Pu Total Bailing Othe Sgpm Duration: btoc) Pumping wa paracteristics: Clear Cloudy V 9): Ualty V	umping Baili duration: er (specify): ater level: Sediment Vater sample co	kcck (bgl) ng hrs hrs ft (btoc) Gas	Filter pack Type and a Final we Total dept Final stick SWL: 4 Artesian file Type of we Where we Well close Reason fo Method of Sealant ma	:: From: size of mat Il complet drilled: up: 15 ow: ell cap: 16 ow: ell cap: 16 in closure: c	ft To:_ terial: too data: too ft ft (btoc) ft	ft Thickness: Finished well depth: 400 Depth to bedrock: 18 Estimated well yield: 3 1/2 USgpm, or Artesian pressure Well disinfected: Yes D No To Casing	ft (b ft (b ft (b USgp
Develope Air lifting Other (spe Notes: Well yiel Pumping Rate: SWL befor Obvious Fresh Colour/odd Well drill Name (firs Registratio	ed by: g Su acify): d estimat g F Air re test: water qu Salty bur: bur: ter (print c st, last) (see on no. (see	rging ted by: lifting US ift (t sality ch C clearly): te note 19 note 20):	Jetting Pu Total Bailing Othe Sgpm Duration: btoc) Pumping wa paracteristics: Clear Cloudy V 9): Walter	umping Baili duration: er (specify): ater level: Sediment Vater sample co	kcck (bgl) ng hrs hrs ft (btoc) Gas	Filter pack Type and a Final we Total depth Final stick SWL: Artesian file Type of we Where we Well closs Reason fo Method of Sealant ma Details of o	:: From: size of main in drilled: up: 15 up: 15 ow: ell cap: 16 in drilled: up: 15 ow: ell cap: 16 in drilled: up: 15 ow: ell cap: 16 in drilled: up: 15 ow: ell cap: 16 in drilled: up: 15 ow: closure: 16 aterial: closure (se	ft To:_ terial: too data: too ft ft (btoc) ft	ft Thickness:	ft (b)
Develope Air lifting Other (spe Notes: Well yiel Pumping Rate: SWL befor Obvious V Fresh Colour/odd Well drill Name (firs Registratio Consultant	ed by: g Su ecify): d estimat g Air re test: water qu Salty bur: bur: fer (print c st, last) (see t (if applicab	rging lifting US ft (t ality ch ve note 19 note 20): le; name a	□ Jetting □ Pu Total □ Bailing □ Othe Sgpm Duration: btoc) Pumping wa paracteristics: Clear □ Cloudy V 9): Ua(try : 050 %10 and company):	umping Baili duration: er (specify): ater level: Sediment Vater sample co	kcck (bgl)	Filter pack Type and a Final we Total deptil Final stick SWL: 4 Artesian file Type of we Where we Well closs Reason fo Method of Sealant ma Details of o	:: From: size of mat Il complete the drilled: up: / S up:	terial: terial: too data: too fi too	ft Thickness:	ft (b) ft (b) USgp
Develope Air lifting Other (spe Notes: Well yiel Pumping Rate: SWL befor Obvious V Fresh Colour/odd Well drill Name (firs Registratio Consultant	ed by: g Su acify): d estimat g Air re test: water qu Salty bur: ler (print c st, last) (see t (if applicab DN: Well constr	rging lifting US ft (t vality ch vality ch val	Jetting Pu Total Bailing Othe Sgpm Duration: btoc) Pumping wa paracteristics: Clear Cloudy V 9): Ualty V	umping Baili duration: er (specify): ater level: Sediment Water sample co Howc 201	kcck (bgl)	Filter pack Type and a Final we Total depth Final stick SWL: Artesian flu Type of we Where we Well closs Reason fo Method of Sealant ma Details of o Date of w	:: From: size of main in drilled: up: 15 in drilled: up: 15 in complet in complet in up: 15 in complet in complet in closure: Complete in closure: Complete closure: Complete closure: Complete closure: Complete closure (second closure	ft To:_ terial: too data: too ft ft (btoc) ft	ft Thickness:	ft (b) ft (b) USgp
Develope Air lifting Other (spe Notes: Well yiel Pumping Rate: SWL befor Obvious V Fresh Colour/odd Well drill Name (firs Registratio Consultant DECLARATIO n accordance Signature	ed by: g Su ecify): d estimat g Air re test: water qu Salty our: bur: fer (print c st, last) (see t (if applicab	rging lifting US ft (t vality ch vality ch val	Jetting Pu Total Bailing Othe Sgpm Duration: btoc) Pumping wa paracteristics: Clear Cloudy V 9): Ualter o 5 0 %10 atteration_or well closure, as	umping Baili duration: er (specify): ater level: Sediment Water sample co Howc 201	kcck (bgl)	Filter pack Type and a Final we Total deptil Final stick SWL: 4 Artesian file Type of we Where we Well closs Reason fo Method of Sealant ma Details of o	:: From: size of main in drilled: up: 15 in drilled: up: 15 in complet in complet in up: 15 in complet in complet in closure: Complete in closure: Complete closure: Complete closure: Complete closure: Complete closure (second closure	terial: terial: too data: too fi too fi to	ft Thickness:	ft (b ft (b USgr

-

WTN 69157

WELL LOG CONSTRUCTION RECORD OWNER Mr. Albert Mauz Address RR#I Site 52 Comp. F18 Ossoyoos B.C. YOH IVO east of Ossayous (up paved driveway on left.) Well Location 12 Km. Date Completed May 27/95 Date Started May 18 Drilling Method Air rotary QUALITY WELL DRILLING LTD. Driller Don Romses Helper Rob Crampton P.O. BOX 589 OKANAGAN FALLS, B.C. VOH 1R0 File _____ Folio PH: (604) 497-5777 and l Signed by CASING RECORD LOG OF FORMATIONS Dia. 6 ins. Wt. 2/2#/ft. From 0 to/14 Depth Descriptions 0_ to 5' Line sono Dia. __ins. Wt. ___#/ft. From _____ to Dia.____ins. Wt.____#/ft. From_____to_ and si _ to _ to_8 Shoe_____ Welded_____ Cemented __ 8' to 11 42 SCREEN RECORD ____ Material__ 42 10 510 Make___ hedroc Slot opening_ Length ho bore to ft_Bottom ft. Тор ____ ____ to _____ Fittings Top ____ Fittings Bottom_ _ to ___ Gravel Pack _ to _ * This well Natural 1215 Development Method Sir 117 not lined. ____ to ____ ROCK WELL DATA _____to _____ Open Bore Hole_____ Dia.___6 From _____42___ft. to _5/0 ins. to ____ ft. to ____ to ___ **PRODUCTION DATA** ____ to ___ Static Level ft. Measured from Ground ____ to ___ ___ to __ Pumping Level _ Pumping Level ______ft. at _____GPM Total air lift th. at 2-22 GPM GPM _____to ____ ____ to ___ Bail Test ft. at GPH _ to ___ ft. at_ GPH 490 ____ to ___ Recommended Pump Setting ____ ft. ___ to ___ GPM Recommended Max. Pump Output ____ to ____ GPH _____to ____ 2 Duration of Test Hrs. _ to _ **GENERAL REMARKS** ___ to ___ ____ to ___ This well was ___ to ___ with a 27 ____to ___ to ____ ____ to ____ _____to ____

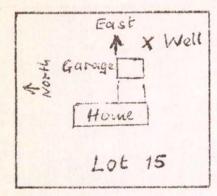
Area 17 Schi Juris Assessment H 06748,300 14 714

Lot 15, Plan 21789, Subsid, Cot 2, Pistrict Lot 2709, similkaneer Div of Yak Land District PID # 002 -165 - 481

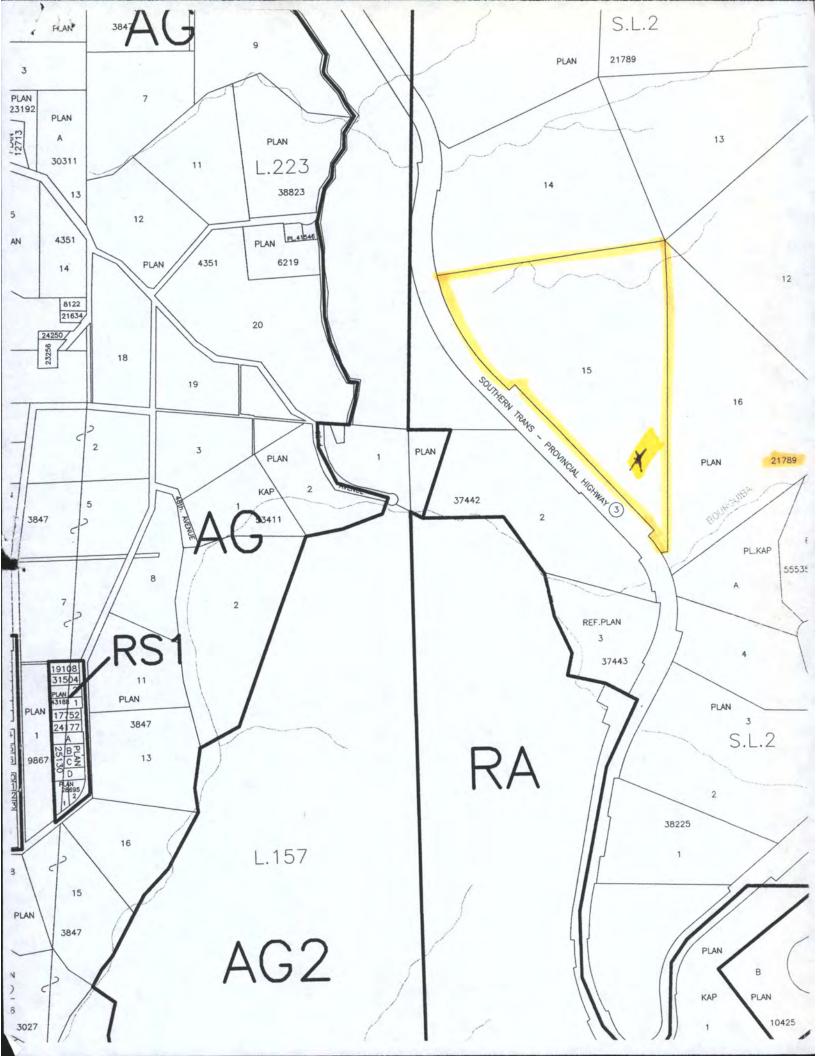
Albert A MAUZ Karin H MAUZ Sik 52 comp 18 RR 1. Osoyoos, BC VOHIVO

Location of property Hingy 3

45.4 arc


Phone to check if its Lot 15 or 14?

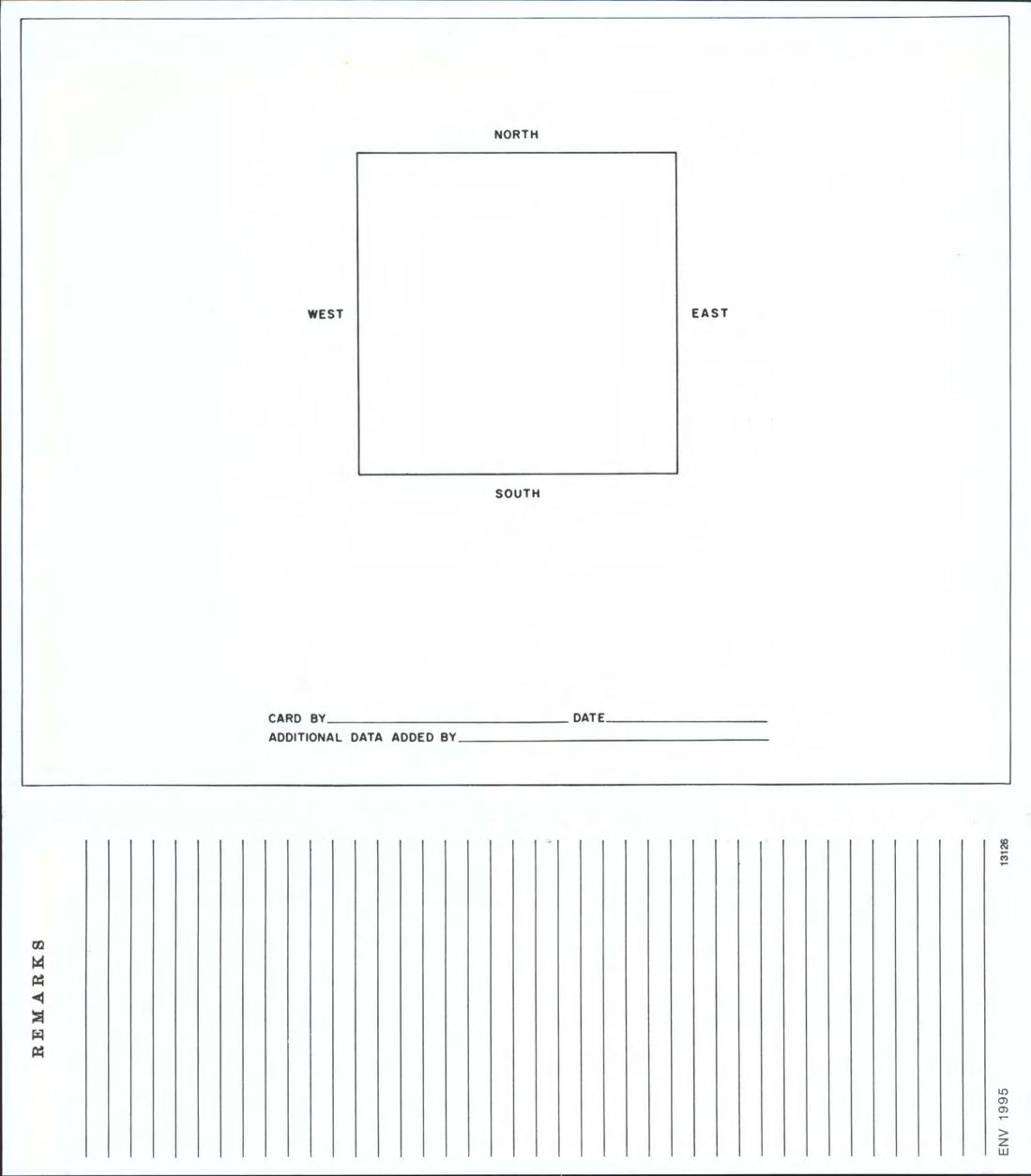
Maiked


To Be Filled and Return in Envelope Provided

Well Owners Name: Albert & Karin Mauz

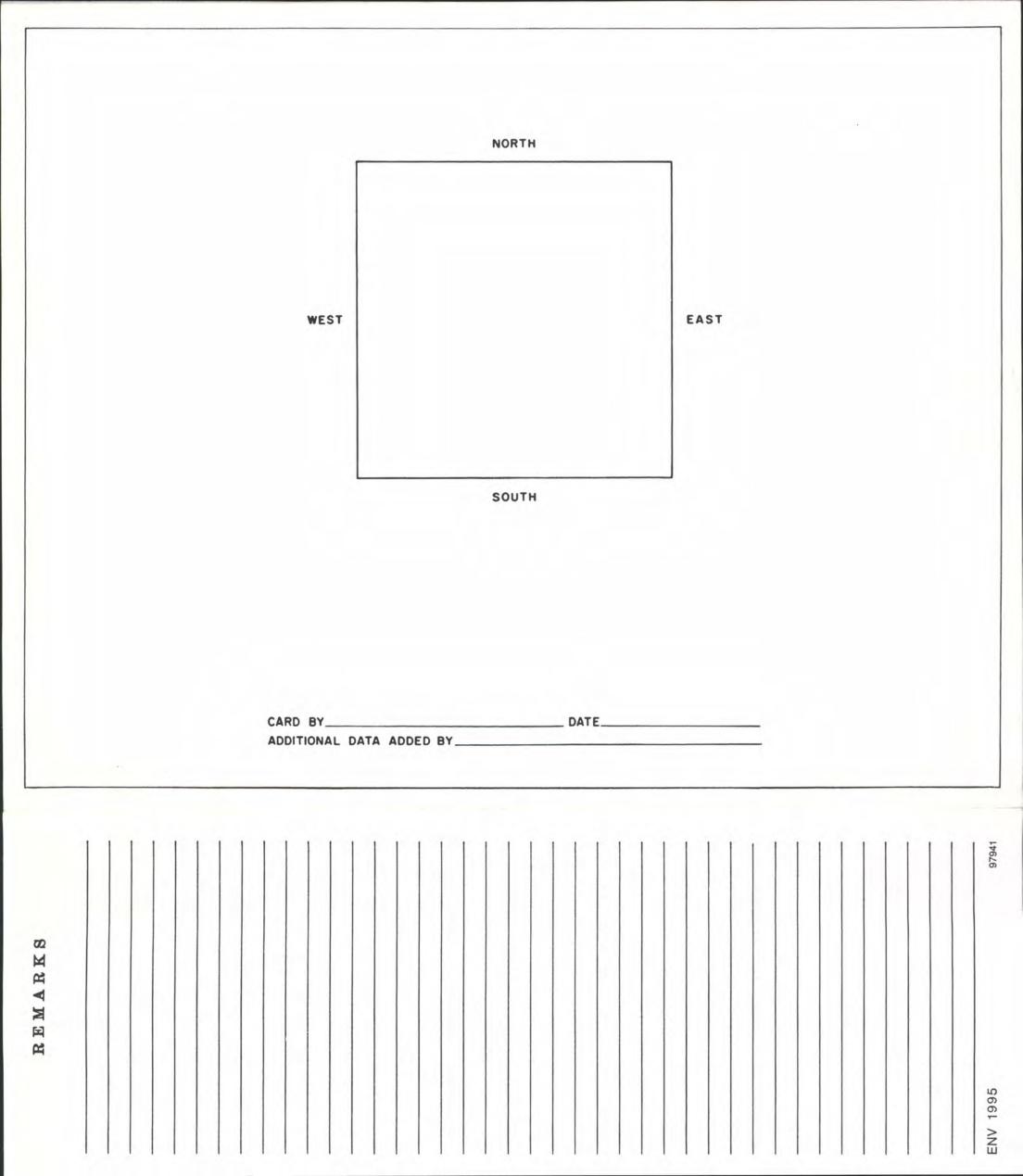
Address: Highway 3 East, RR#1, Site 52 Comp.18 Osoyoos, B.C. Phone#: 250-495-6085

Well Location: Well is approximately 40 feet South-East of home.


'Aand C' Schedule!

415

			10				V	
BCGS MAP 082E.00	3.2.2.4	WTN	6915	1				007
							WELL NO.	
	WATER WELL R	ECORD PID:0				Z	WELL NO.	
MINISTRY OF ENVIRONMENT WATER M	ANAGEMENT DIVISION		VICTORIA,	BRITISH	COLUMB	A		3
LEGAL DESCRIPTION: LOT 15 SEC. 2	_ TP R D.L.2709 1	LAND DISTRICT	SDYD	PL	AN 21+8	9		N
DESCRIPTIVE LOCATION 050 Y005							x y	NO.
OWNER'S NAME MR. ALBERT MAUZ	ADDRESS_H	WY 3 EAST, &	REI, SITE 52	ComPI	8,0504	005	<u>a</u> 1	10,
DRILLER'S NAME QUALITY	_ ADDRESS		DA1	E COMPL	ETED	NAT. TO	OPO. SHEET NO	
DEPTH 510 ELEVATION DESTINA	TED CASING DIAM.	LENGTH		95/0	5/27	BROOMCTION	TEST SUMMARY	
METHOD OF CONSTRUCTION				DATE			TEST SUMMART	
SCREEN LOCATION SCREEN				TEST BY_			OF TEAT	
SANITARY SEAL YES D NO D SCREEN D	SIZELENGTH	TYPE		RATE			DRAWDOWN	
PERFORATED CASING D LENGTH						LETION OF TEST	SPECIFIC CAPACITY _	
GRAVEL PACK LENGTH		,ETC		PERMEABI			STORAGE COEFF.	
DISTANCE TO WATER DESTIMATED		CIAN DECCUDE		ESTIMATED	WELL YIELD			
DATE OF WATER LEVEL MEASUREMENT						NG RATE		
CHEMISTRY						LITHO	DLOGY	
		DATE		FROM	то	(DESCRIPTION	
		DATE		-				
TOTAL DISSOLVED SOLIDS mg/1 TEMPER	ATURE •C PH	SILICA (SIO2) -	mg/1	-				
Umhos/cm CONDUCTANCEAT 25°C TOTAL IRON (Fe)	mg/I TOTAL HARDNES	SS (CaCO _x)	m g/l					
TOTAL ALKALINITY (CoCO3)mg/I PHEN				-				
		TURBIDITY _		-				
				-				
ANIONS mg/l ep	m CATIONS	<u>s</u> mg/l	e p m					
CARBONATE (CO3)	CALCIUM	(Ca)		-				
BICARBONATE (HCO3)	MAGNESIU	M (Mg)						
SULPHATE (SO4)		(a)			1			
CHLORIDE (CI)	POTASSIU	JM (K)		-				
NO2 + NO3 (NITROGEN)	IRON (DISS	OLVED)						
• TKN. (NITROGEN)								
PHOSPHORUS (P)								
TKN - TOTAL KJELDAHL NITROGEN	CHEMISTRY SITE NO.			-				
NO2 - NITRITE NO3 = NITRATE				-				
CHEMISTRY FIELD TESTS								
TEST BY DATE	EQUIPMEN	T USED						
,								
CONTENTS OF FOLDER								
DRILL LOG	D PUMP TEST DATA		ANALYSIS					
SIEVE ANALYSIS	GEOPHYSICAL LOGS	REPORT		-				
OTHER				-				
VIIIEN								
SOURCES OF INFORMATION				-				


s. . .

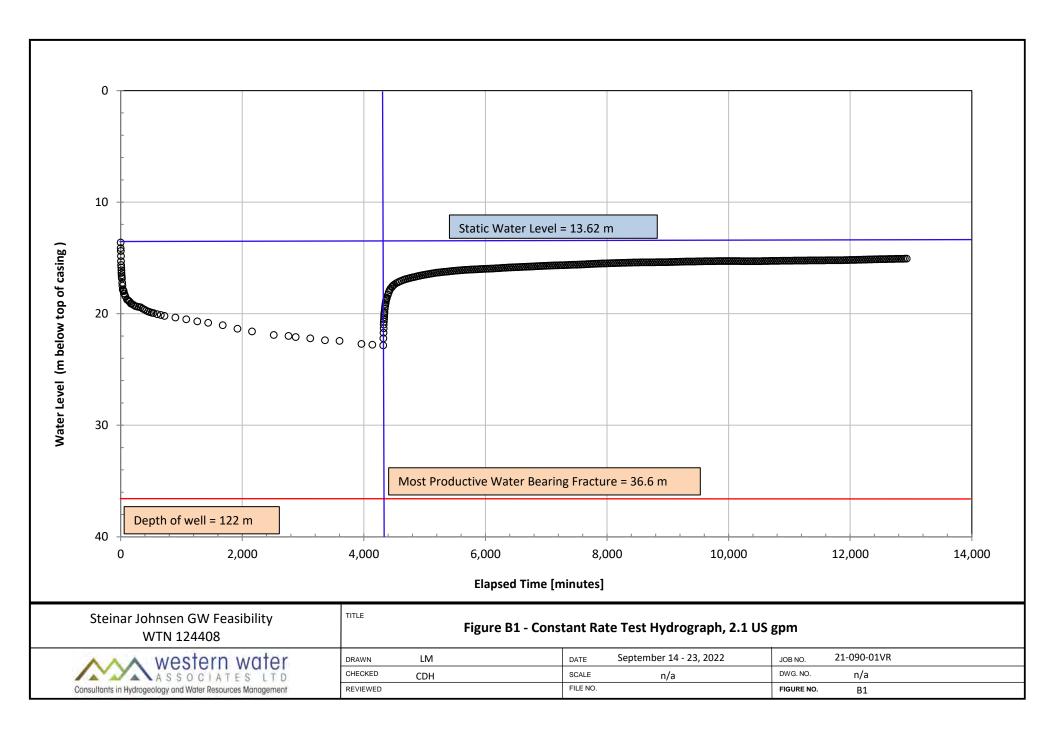
- 14

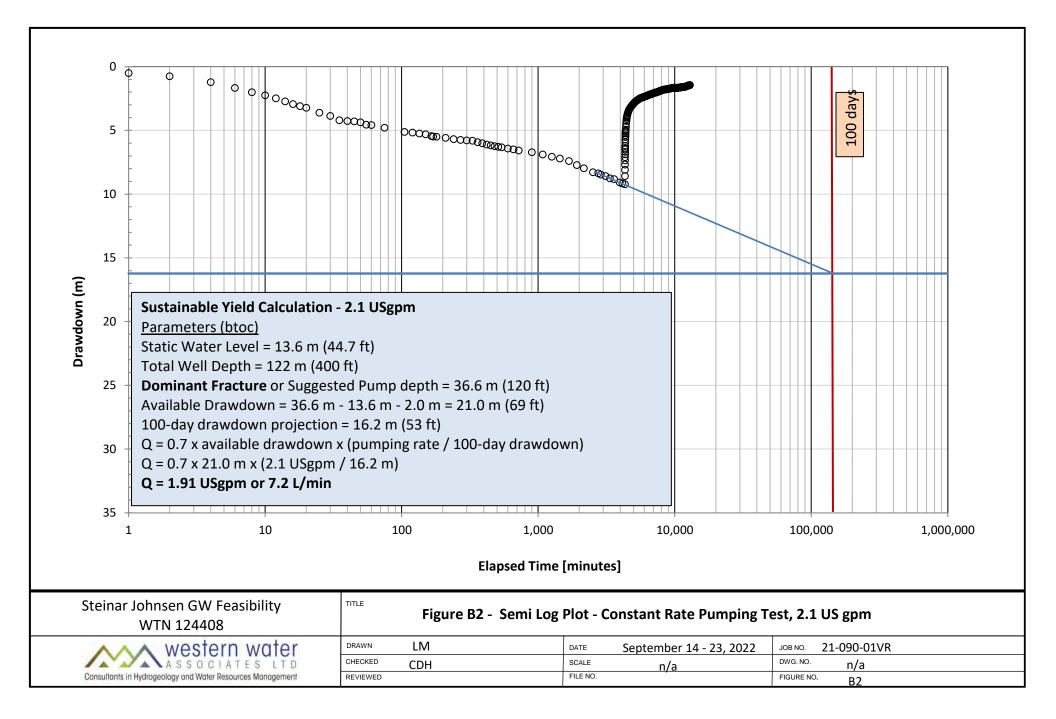
Province of British Columbia E	BC Invironm	nent WELL		Water E C O F		jement	Division	1	4780	
	WELL			ELEV			L	ocation		_
		N	M	Date 19	Ту					
Owners Name & Address Albert + Karin Legal Description & Address Lot 15 Plan	n 217	uz 189.	subs	idy a	Lot:	z Di	st lot	270	19 51	YYD.
Descriptive Location 1806 Hwy 3E 05	oyoos	B.C.	5K	ms f	rom	city (entr	e		
I. TYPE 1 I New Well 2 I Reco OF WORK 3 I Deepened 4 Aban		9.	CASINO		4 🗆 P		2 □ Go 5 □ Co		3 🗆 Wa	bod
2. WORK 1 Cable tool 2 Bored 3 C 4 Rotary a mud b Pair c	reverse		Hole	steel		PVC 1	here			units ins
3. WATER 1 Domestic 2 Municipal 3	nev _	D	iameter from	65%		4" 6ft				ins ft
4. DRILLING ADDITIVES Rock oil		- T	to hickness	250		520' Scd 40				ft ins
5. MEASUREMENTS from 1 D'ground level 2	top of casin	10	eight	16165						Ib/ft
casing height above ground level 2 ft	t	ft. 1 []	Welded	2 🗆 (Cemente		hreaded	101	Vew 2,0	Used,
FROM TO 6. WELL LOG DESCRIPTION	f	NL Per 430	forations	4" PV	60,380	10 400	260 10	W Per 280 s	haletra	ins at
0 32ft Sandy Brown clay w Gravel + Co 32' 6"ft Broken + shatered Rock w so		Sh	e (s) : Ye	s weld	on Di	to 57	with (Casing	Namme	er .
Sandy Brown Clay		Grg	aut : 6"	Casing	Poun	ded in Cemen	108"	17'8'	'surfa	ce hale
6ft 134' Soild Black + white Granite 173 ft 6" steel, Casing stopped	Bedrock	10.	SCREI	EN: 1	□ Nomin	al (Telesco	ppe)	2 U Pip	be Size	1
Cemented into 8"x 17 ft surf	face hole			🗆 Otl	her	Slot 2			-	ouvre
134 145 Black white w some Brown Gr	A CONTRACTOR OF A CONTRACTOR O	hack				Steel 2			Other	
145' 166' Hard Black + white Granite Bed 166' 168' softer Black, white + Brown Gra		ock T				REEN &		/		units
168 177 Soft Brown + Tan " "		- 1	_ength iam. I D				/			ft
177' 194' Verysoft Brown + Tan " 194 458 Have Black + white Granite G	Salme	S	lot Size			/				ins ins
458 468' Dark Greent white "	11		from to	_		/				ft ft
468 520 Very Hard Black+white ")		Fittings	s, top	1	-	botto	m		1
520' Stopped Drilling		_	Gravel							
		11.				Surgi				
		12.	TEST			Bail <mark>3</mark> 🕼	Air D			1301
			Water Le	DRAWDOV	ft at VN in ft	fter test			ERY in ft	
	m		mins		mins		mins	WL	mins	WL
C.C. L. C. L. L										
151 168' 177' 194' 242' 246' 275' 2	85' 296	*			1					
Soft spots + fractures at. 151,168', 177', 194', 242', 246', 275', 2 387, 436* 478		13.	Sub.	DED PUMP T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500		Contraction of the second second		
			WATEF	R TYPI	E : 1 🕑	fresh 2	salty	3 Decle	ar 4 [cloudy
Water Bearing Fractures at 296 Pt, 436						II				
7. CONSULTANT		15.		1 1 1	1 1	1 ig/L 3		1 1	1 1 1	mg/L mg/L
Address				LL		gre v				
8. WELL LOCATION SKETCH	5	SITE I D	No			-	Lab D	ote 200	STO13	1300
	16. FINA	L WELL	COMP	LETIO	N DA	ТА	.1.1	1.1.1	21	
	Well D Statio	Water Lev		1801	14hrs	Well Yie		apm Here		pm ft
	Back	filled	A LAND				- 1	Sec. 4		
	Well H	Head Comp	letion _	Steel	Cap	weld	ed t	o Cas	ring	
								3 ¹		
	17. DRIL			REU	E XII		」スエ	NAME		
	18. CONT		nature	The	(<		
	Addre	ess (yclon	6 Dri	lling	Ltd.				
		- Skal	Celow	na l	3.0.					
4	Maria	ber, BCV		7462	Color Station of Color					
	Iviem	Der, BCV	WUA	Lyes	Eno	1				-39

			WTW 84186
CGS MAP 0820003.2.2.4 WTN	847	86	WELL NO.
WATER WELL RECORD PID 002 165	181		Z / WELL NO.
MINISTRY OF WATER, LAND AND AIR PROTECTION Subs. Ly Lot 2 VICTORIA,	BRITISH CO	LUMBIA	3236911
LEGAL DESCRIPTION: LOT 15 SEC. TP. R. D.L.2709 LAND DISTRICT SD.Y D		71780	TTESSICIET NI
LEGAL DESCRIPTION: LOT 13 SEC. TP. R. D.Lator LAND DISTRICT 24. 4	PLAN .	61107	1 19321818161
DESCRIPTIVE LOCATION 1806 - Itmy 3E OSOYDOS BC SKms From Gity Centre LICENCE	NO 0	DATE	Z X Y NO.
OWNER'S NAME <u>AIBERT KARIN MQUZ</u> ADDRESS ADDRESS DATE	E COMPLET	ED 05/03/30	NAT. TOPO. SHEET NO.
DEPTH 520 OF SURVEYED CASING DIAM LENGTH		PROD	UCTION TEST SUMMARY
METHOD OF CONSTRUCTION CASING DIAMLENGTH	DATE		
SCREEN LOCATION SCREEN D SIZE LENGTH TYPE	TEST BY		DURATION OF TEST
SANITARY SEAL YES NO SCREEN SIZELENGTHTYPE	BATE		DRAWDOWN
PERFORATED CASING LENGTHPERFORATIONS FROMTO	AVAILABLE DRA		SPECIFIC CAPACITY
GRAVEL PACK D LENGTHDIAMSIZE GRAVEL, ETC	PERMEABILITY		STORAGE COEFF
DISTANCE TO WATER 180 DESTIMATED WATER LEVEL	TRANSMISSIVI	LL YIELD 2	usgem
FROM ARTESIAN PRESSURE	RECOMMENDE	D PUMPING RATE	
DATE OF WATER LEVEL MEASUREMENT WATER USE	HECOMMENDE	D POMP SET TING	
CUENICE DY			LITHOLOGY
CHEMISTRY DATE DATE	FROM	то	DESCRIPTION
TEST BY DATE			
TOTAL DISSOLVED SOLIDS mg/1 TEMPERATURE °C pH SILICA (SIO2) mg/1			
CONDUCTANCEAT 25°C TOTAL IRON (Fe)mg/I TOTAL HARDNESS (CaCO ₃)mg/I			
TOTAL ALKALINITY (CoCO3) mg/I PHEN. ALKALINITY (Co CO3) mg/I MANGANESE(Mn) mg/I			
COLOUR TURBIDITY			
ANIONS mg/l epm <u>CATIONS</u> mg/l epm			
CARBONATE (CO3) CALCIUM (Co)			
BICARBONATE (HCO3) MAGNESIUM(Mg)			
SULPHATE (SO4) SODIUM(Na)			
CHLORIDE (CI) POTASSIUM (K)			
NO2 + NO3 (NITROGEN)			
• TKN. (NITROGEN)			
PHOSPHORUS (P)			
TKN . TOTAL KJELDAHL NITROGEN CHEMISTRY SITE NO.			
NO2 = NITRITE NO3 = NITRATE			
AUCHICTOR FIELD TESTS			
CHEMISTRY FIELD TESTS TEST BY DATE EQUIPMENT USED			
CONTENTS OF FOLDER			
DRILL LOG DPUMP TEST DATA CHEMICAL ANALYSIS			
SIEVE ANALYSIS GEOPHYSICAL LOGS REPORT			
OTHER			
SOURCES OF INFORMATION			

OFZE 003 224 ECOCAT
BRITISH COLUMBIA The Best Place on Earth Ministry of Environment Image: Well Construction Report Well Closure Report Well Closure Report Well Alteration Report Stamp company name/address/ phone/fax/email here, if desired. Ministry Well ID Plate Number: 105407 Image: 105407
Red lettering indicates minimum mandatory information. See reverse for notes & definitions of abbreviations.
Owner name: Albert & Karin Mauz
Mailing address: 1806 Huy 3 E. Town OSO4005 Prov. BC. Postal Code VOH 1V6
Well Location (see note 2): Address: Street no. 806 Street name HWYSE Town OServors
Or Legal description: Lot 15 Plan 21789 D.L. 2709 Block Sec. Twp. Rg. Land District SDYD
@ PID: and Description of well location (attach sketch, if nec.): 2 Km papped 1806 heading
east. on left side of hwy.
NAD 83: Zone: UTM Easting: March 232389112 m Latitude (see note 4):
(see note 3) UTM Northing: 5432436 N m Dangitude:
Method of drilling: air rotary dual rotary cable tool mud rotary auger driving jetting other (specify):
Orientation of well: vertical horizontal Ground elevation: 6 ft (asl) Method (see note 5):
Class of well (see note 6): Water Supply Sub-class of well: Domestic
Water supply wells: indicate intended water use: Diprivate domestic water supply system irrigation commercial or industrial other (specify):

Lithologic description (see notes 8-13) or closure description (see notes 14 and 15)


1			Sur	fic	ial	M	ate	eria	1	1		B	led	roc	k٨	/lat	eria	al		1			C	olo	our			1	Н	ard	nes	s		Wat	ter	Cor	nten	t	Observations
From ft (bgl)	To ft (bgl)	Clay	Silt		Cond with aloufallt	Sano with clay/silt	Sand, fine-med	Sand, med-coarse	with a		SIIISTORE/SIIAIE	Sandstone	Conglomerate	Limestone	Basalt	Volconio	VOICAIIIC		Other Surficial/ Redrock	Red	Orana	Clalige	Brown	Tan	Light Grey	Blue	Green	Dark Grey	Very Hard	Hard	Dense/Stiff	Loose	Dry	Moist	Wet	High Production	Lost circulation	Not Available	(e.g. other geological materials (e.g. boulders), est. water bearing flow (USgpm), or closure details)
0	30	0	0	С		5	0	0	C		D	C	0	0	С			C	0	C			C	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	BoulderseCobbles
30	145	0	0	С)	D	0	0	C		C	С	0	0	C		20	0	0	C			C	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.5 GPM @ 85'
145	155	0	0	С) (D	0	0	C) (C	0	0	С) (0	0	C)		C	С	0	0	0	0	0	0	0	0	0	0	C	0	0	0	
155	180	0	0	С		C	0	0	C		C	C	0	0	С)) (D	0	C	$) \subset$		C	C	0	0	0	0	0	0	0	0	0	0	C	0	0	0	155' - 10 GPM
		0	0	С		D	0	C	C		C	С	0	0	С)) (С	0	C)		D	C	0	0	0	0	0	0	0	0	0	0	С	00	0	0	
		0	0	С		D	0	0	C		C	С	0	0	С)) (С	0	C)		C	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	
		0	0	С) (C	0	0	C) (С	0	0	С)) (С	0	C)) (C	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	
		0	0	С)	C	0	C	C			С	0	0	С)		С	0	C)		C	С	0	0	0	0	0	0	0	0	0	0	С	00	0	0	
		0	0	С		D	0	C	C		0	С	0	0	С)		С	0	C)		C	0	0	0	0	0	0	0	0	0	0	0	С	C	00	0	
		0	0	С		C	0	C	C		D	О	0	0	С		C	С	0	C	00		C	0	0	0	0	0	0	0	0	0	0	0	C	00	0	0	


Casing details	Screen details
FromToDiaCasing Material/Open HoleWallDriveft (bgl)ft (bgl)in(see note 17),ThicknessShoein	FromToDiaTypeSlot Sizeft (bgl)ft (bgl)in(see note 18)
0 15 \$ Casing Kulled 250 No #2 33 6 18 Steel 250 Krs	
Surface seal: Type: Depth: ft Method of installation: Poured Pumped Thickness: in Backfill: Type: Depth: ft Liner: DVC Other (specify):	Intake: Screen Open bottom Uncased hole Screen type: Telescope Pipe size Screen material: Stainless steel Plastic Other (specify): Screen opening: Continuous slot Slotted Perforated pipe Screen bottom: Bail Plug Plate Other (specify): Filter pack: From: ft To: ft Thickness: in Type and size of material:
Developed by: Air lifting Surging Jetting Pumping Bailing Other (specify): Total duration: Notes: Mell yield estimated by:	Final well completion data: Total depth drilled: ft Final stick up: in Depth to bedrock: ft (bgl) SWL: ft (btoc) Artesian flow: USgpm, or Artesian pressure: Type of well cap: Well disinfected: Well closure information: Well closure
Fresh Salty Clear Cloudy Sediment Gas Colour/odour: Water sample collected: Water sample collected: Well driller (print clearly): Name (first, last) (see note 19): Mark Water Sample collected: Consultant (if applicable; name and company):	Reason for closure: Poured Pumped Sealant material: Backfill material: Details of closure (see note 16):
DECLARATION: Well construction, well alteration or well closure, as the case may be, has been done in accordance with the requirements in the Water Act and the Ground Water Protection Regulation. Signature of Driller Responsible	Date of work (YYYY/MM/DD): Started: 090626 Completed: 090630 Comments: Sreat Water (201
PLEASE NOTE: The information recorded in this well report describes the works and hydrogeologic cond or closure, as the case may be. Well yield, well performance and water quality are not guaranteed as the including natural variability, human activities and condition of the works, which may change over time.	itions at the time of construction, alteration y are influenced by a number of factors, pink: Ministry copy Sheet of 3

Appendix B

Pumping Test Data and Graphs

ell depth = 400 ft	W	ell diameter =	6 in	Measurement	t method = Pail	and stopwat	ch	Pump Depth = 385 ft				
Comments	Real Time	Time since pump started, t (minutes)	Water level measurement (btoc) (m)	Water level measurement (btoc) (ft)	Water level changes (m)	Drawdown (ft)	Drawdown (m)	Pumping Rate (I/s)	Pumping Rate (USgpm)		c Capaci	
STATIC	2022-09-14 12:00	0	13.620	44.7		0.00	0.00	0.00	0			
14-Sep-22	2022-09-14 12:01	1	14.120	46.3	0.50	1.64	0.50	0.13	2.1	0.26	1.28	
•	2022-09-14 12:02	2	14.370	47.1	0.25	2.46	0.75	0.13	2.1	0.18	0.85	
	2022-09-14 12:04	4	14.840	48.7	0.47	4.00	1.22	0.13	2.1	0.11	0.52	
	2022-09-14 12:06	6	15.290	50.2	0.45	5.48	1.67	0.13	2.1	0.08	0.38	
	2022-09-14 12:08	8	15.630	51.3	0.34	6.59	2.01	0.13	2.1	0.07	0.3	
	2022-09-14 12:10	10	15.870	52.1	0.24	7.38	2.25	0.13	2.1	0.06	0.2	
	2022-09-14 12:12	12	16.110	52.9	0.24	8.17	2.49	0.13	2.1	0.05	0.2	
	2022-09-14 12:14	14	16.340	53.6	0.23	8.92	2.72	0.13	2.1	0.05	0.2	
	2022-09-14 12:16	16	16.560	54.3	0.22	9.65	2.94	0.13	2.1	0.05	0.2	
	2022-09-14 12:18	18	16.720	54.9	0.16	10.17	3.10	0.13	2.1	0.04	0.2	
	2022-09-14 12:20	20	16.840	55.3	0.12	10.56	3.22	0.13	2.1	0.04	0.2	
	2022-09-14 12:25	25	17.230	56.5	0.39	11.84	3.61	0.13	2.1	0.04	0.1	
	2022-09-14 12:30	30	17.490	57.4	0.26	12.70	3.87	0.13	2.1	0.03	0.1	
	2022-09-14 12:35	35	17.820	58.5	0.33	13.78	4.20	0.13	2.1	0.03	0.1	
	2022-09-14 12:40	40	17.890	58.7	0.07	14.01	4.27	0.13	2.1	0.03	0.1	
	2022-09-14 12:45	45	17.910	58.8	0.02	14.08	4.29	0.13	2.1	0.03	0.1	
	2022-09-14 12:50	50	17.990	59.0	0.08	14.34	4.37	0.13	2.1	0.03	0.1	
	2022-09-14 12:55	55	18.180	59.6	0.19	14.96	4.56	0.13	2.1	0.03	0.1	
	2022-09-14 13:00	60	18.200	59.7	0.02	15.03	4.58	0.13	2.1	0.03	0.1	
	2022-09-14 13:15	75	18.420	60.4	0.22	15.75	4.80	0.13	2.1	0.03	0.1	
	2022-09-14 13:45	105	18.740	61.5	0.32	16.80	5.12	0.13	2.1	0.03	0.1	
	2022-09-14 14:00	120	18.790	61.6	0.05	16.96	5.17	0.13	2.1	0.03	0.1	
	2022-09-14 14:15	135	18.870	61.9	0.08	17.23	5.25	0.13	2.1	0.03	0.1	
	2022-09-14 14:30	150	18.930	62.1	0.06	17.42	5.31	0.13	2.1	0.02	0.1	
	2022-09-14 14:45	165	19.070	62.6	0.14	17.88	5.45	0.13	2.1	0.02	0.1	
	2022-09-14 14:50	170	19.100	62.7	0.03	17.98	5.48	0.13	2.1	0.02	0.1	
	2022-09-14 15:00	180	19.115	62.7	0.01	18.03	5.50	0.13	2.1	0.02	0.1	
	2022-09-14 15:30	210	19.210	63.0	0.10	18.34	5.59	0.13	2.1	0.02	0.1	
	2022-09-14 16:00	240	19.310	63.4	0.10	18.67	5.69	0.13	2.1	0.02	0.1	
	2022-09-14 16:30	270	19.370	63.6	0.06	18.87	5.75	0.13	2.1	0.02	0.1	
	2022-09-14 17:00	300	19.400	63.7	0.03	18.96	5.78	0.13	2.1	0.02	0.1	
	2022-09-14 17:30	330	19.430	63.7	0.03	19.06	5.81	0.13	2.1	0.02	0.1	
	2022-09-14 18:00	360	19.540	64.1	0.11	19.42	5.92	0.13	2.1	0.02	0.1	
	2022-09-14 18:30	390	19.630	64.4	0.09	19.72	6.01	0.13	2.1	0.02	0.1	
	2022-09-14 19:00	420	19.730	64.7	0.10	20.05	6.11	0.13	2.1	0.02	0.1	
	2022-09-14 19:30	450	19.800	65.0	0.07	20.28	6.18	0.13	2.1	0.02	0.	
	2022-09-14 20:00	480	19.860	65.2	0.06	20.47	6.24	0.13	2.1	0.02	0.1	
	2022-09-14 20:30	510	19.905	65.3	0.05	20.62	6.29	0.13	2.1	0.02	0.1	
	2022-09-14 21:00	540	19.940	65.4	0.04	20.74	6.32	0.13	2.1	0.02	0.1	
	2022-09-14 22:00	600	20.040	65.8	0.10	21.06	6.42	0.13	2.1	0.02	0.1	
	2022-09-14 23:00	660	20.110	66.0	0.07	21.29	6.49	0.13	2.1	0.02	0.1	
15-Sep-22	2022-09-15 0:00	720	20.195	66.3	0.09	21.57	6.58	0.13	2.1	0.02	0.	
	2022-09-15 3:00	900	20.340	66.7	0.15	22.05	6.72	0.13	2.1	0.02	0.	
	2022-09-15 6:00	1080	20.505	67.3	0.16	22.59	6.89	0.13	2.1	0.02	0.0	
0.45	2022-09-15 9:00	1260	20.680	67.9	0.18	23.16	7.06	0.13	2.1	0.02	0.0	
24h	2022-09-15 12:00	1440	20.820	68.3	0.14	23.62	7.20	0.13	2.1	0.02	0.0	
	2022-09-15 16:00	1680	21.030	69.0	0.21	24.31	7.41	0.13	2.1	0.02	0.0	
16 Son 22	2022-09-15 20:00	1920	21.340	70.0	0.31	25.33	7.72	0.13	2.1	0.02	0.0	
16-Sep-22	2022-09-16 0:00	2160	21.595	70.9	0.25	26.17	7.98	0.13	2.1	0.02	0.0	
	2022-09-16 6:00	2520	21.900	71.9	0.31	27.17	8.28	0.13	2.1	0.02	0.0	
106	2022-09-16 10:00	2760	21.990	72.1	0.09	27.46	8.37	0.13	2.1	0.02	0.0	
48h	2022-09-16 12:00	2880	22.090	72.5	0.10	27.79	8.47	0.13	2.1	0.02	0.0	
	2022-09-16 16:00	3120 3360	22.210	72.9	0.12	28.18	8.59	0.13	2.1	0.02	0.0	
	2022-09-16 20:00 2022-09-17 0:00	3360	22.380 22.440	73.4 73.6	0.17	28.74 28.94	8.76 8.82	0.13	2.1 2.1	0.02	0.0	

Well depth = 400 ft	W	ell diameter =	6 in	Measurement	t method = Pail	and stopwat	ch	Pump Depth = 385 ft			
Comments	Real Time	Time since pump started, t (minutes)	Water level measurement (btoc) (m)	Water level measurement (btoc) (ft)	Water level changes (m)	Drawdown (ft)	Drawdown (m)	Pumping Rate (l/s)	Pumping Rate (USgpm)		Capacit
	2022-09-17 6:00	3960	22.710	74.5	0.27	29.82	9.09	0.13	2.1	0.01	0.07
	2022-09-17 9:00	4140	22.780	74.7	0.07	30.05	9.16	0.13	2.1	0.01	0.07
72h	2022-09-17 12:00	4320	22.840	74.9	0.06	30.25	9.22	0.13	2.1	0.01	0.07
Recovery	2022-09-17 12:02	4322	22.210	72.9	-0.63	28.18	8.59	-	-	-	-
17-Sep-22	2022-09-17 12:04	4324	21.710	71.2	-0.50	26.54	8.09	-	-	-	-
	2022-09-17 12:06	4326	21.300	69.9	-0.41	25.20	7.68	-	-	-	-
	2022-09-17 12:08	4328	20.980	68.8	-0.32	24.15	7.36	-	-	-	-
	2022-09-17 12:10	4330	20.720	68.0	-0.26	23.30	7.10	-	-	-	-
	2022-09-17 12:12	4332	20.500	67.3	-0.22	22.57	6.88	-	-	-	-
	2022-09-17 12:14	4334	20.310	66.6	-0.19	21.95	6.69	-	-	-	-
	2022-09-17 12:16	4336	20.120	66.0	-0.19	21.33	6.50	-	-	-	-
	2022-09-17 12:18	4338	19.990	65.6	-0.13	20.90	6.37	-	-	-	-
	2022-09-17 12:20	4340	19.840	65.1	-0.15	20.41	6.22	-	-	-	-
	2022-09-17 12:25	4345	19.550	64.1	-0.29	19.46	5.93	-	-	-	-
	2022-09-17 12:30	4350	19.330	63.4	-0.22	18.73	5.71	-	-	-	-
	2022-09-17 12:35	4355	19.140	62.8	-0.19	18.11	5.52	-	-	-	-
	2022-09-17 12:40	4360	18.990	62.3	-0.15	17.62	5.37	-	-	-	-
	2022-09-17 12:45	4365	18.850	61.8	-0.14	17.16	5.23	-	-	-	-
	2022-09-17 12:50	4370	18.740	61.5	-0.11	16.80	5.12	-	-	-	-
	2022-09-17 12:55	4375	18.650	61.2	-0.09	16.50	5.03	-	-	-	-
	2022-09-17 13:00	4380	18.570	60.9	-0.08	16.24	4.95	-	-	-	-
	2022-09-17 13:15	4395	18.320	60.1	-0.25	15.42	4.70	-	-	-	<u> </u>
	2022-09-17 13:13	4333	18.080	59.3	-0.23	14.63	4.46				
	2022-09-17 13:45	4425	17.890	58.7	-0.24	14.03	4.40	-		_	
	2022-09-17 13:43	4440	17.740	58.2	-0.15	13.52	4.12	-		-	-
		4460	17.620	57.8	-0.13	13.12	4.12	-	-	-	-
	2022-09-17 14:20	4470	17.540	57.5	-0.12	12.86	3.92	-	-	-	
	2022-09-17 14:30	4485		57.3		12.60	3.84	-	-	-	
	2022-09-17 14:45	4485	17.460	57.3	-0.08 -0.07	+		-	-	-	-
	2022-09-17 15:00		17.390			12.37	3.77	-	-		-
	2022-09-17 15:30	4530	17.270	56.7	-0.12	11.98	3.65		-	-	-
manual readings end	2022-09-17 16:00	4560	17.180	56.4	-0.09	11.68	3.56	-	-	-	-
datalogger data begins	2022-09-17 16:30	4590	17.105	56.1	-0.07	11.43	3.49	-	-	-	-
	2022-09-17 17:00	4620	17.036	55.9	-0.07	11.21	3.42	-	-	-	-
	2022-09-17 17:30	4650	16.973	55.7	-0.06	11.00	3.35	-	-	-	-
	2022-09-17 18:00	4680	16.918	55.5	-0.05	10.82	3.30	-	-	-	-
	2022-09-17 18:30	4710	16.869	55.3	-0.05	10.66	3.25	-	-	-	-
	2022-09-17 19:00	4740	16.824	55.2	-0.04	10.51	3.20	-	-	-	-
	2022-09-17 19:30	4770	16.781	55.1	-0.04	10.37	3.16	-	-	-	-
	2022-09-17 20:00	4800	16.742	54.9	-0.04	10.24	3.12	-	-	-	-
	2022-09-17 20:30	4830	16.706	54.8	-0.04	10.12	3.09	-	-	-	-
	2022-09-17 21:00	4860	16.667	54.7	-0.04	10.00	3.05	-	-	-	-
	2022-09-17 21:30	4890	16.627	54.6	-0.04	9.87	3.01	-	-	-	-
	2022-09-17 22:00	4920	16.592	54.4	-0.04	9.75	2.97	-	-	-	-
	2022-09-17 22:30	4950	16.558	54.3	-0.03	9.64	2.94	-	-	-	-
	2022-09-17 23:00	4980	16.527	54.2	-0.03	9.54	2.91	-	-	-	-
	2022-09-17 23:30	5010	16.498	54.1	-0.03	9.44	2.88	-	-	-	-
18-Sep-22	2022-09-18 0:00	5040	16.469	54.0	-0.03	9.35	2.85	-	-	-	-
	2022-09-18 0:30	5070	16.441	53.9	-0.03	9.25	2.82	-	-	-	-
	2022-09-18 1:00	5100	16.412	53.8	-0.03	9.16	2.79	-	-	-	-
	2022-09-18 1:30	5130	16.382	53.7	-0.03	9.06	2.76	-	-	-	-
	2022-09-18 2:00	5160	16.356	53.7	-0.03	8.98	2.74	-	-	-	-
	2022-09-18 2:30	5190	16.332	53.6	-0.02	8.90	2.71	-	-	-	-
	2022-09-18 3:00	5220	16.312	53.5	-0.02	8.83	2.69	-	-	-	-
	2022-09-18 3:30	5250	16.292	53.5	-0.02	8.77	2.67	-	-	-	-
	2022-09-18 4:00	5280	16.272	53.4	-0.02	8.70	2.65	-	-	-	-
	2022-09-18 4:30	5310	16.255	53.3	-0.02	8.64	2.63	-	-	-	-
	2022-09-18 5:00	5340	16.239	53.3	-0.02	8.59	2.62	-	-	-	-

Vell depth = 400 ft	W	ell diameter =	6 in	Measurement	method = Pail	and stopwat	ch	Pump Depth = 385 ft			
Comments	Real Time	Time since pump started, t (minutes)	Water level measurement (btoc) (m)	Water level measurement (btoc) (ft)	Water level changes (m)	Drawdown (ft)	Drawdown (m)	Pumping Rate (l/s)	Pumping Rate (USgpm)	Specific L/s/m	Capacit Usgpm/f
	2022-09-18 5:30	5370	16.223	53.2	-0.02	8.54	2.60	-	-	L/5/111	Usypin/i
	2022-09-18 6:00	5400	16.207	53.2	-0.02	8.49	2.59	-	-	-	-
	2022-09-18 6:30	5430	16.189	53.1	-0.02	8.43	2.57	-	-	-	-
	2022-09-18 7:00	5460	16.171	53.1	-0.02	8.37	2.55	-	-	-	-
	2022-09-18 7:30	5490	16.152	53.0	-0.02	8.31	2.53	-	-	-	-
	2022-09-18 8:00	5520	16.135	52.9	-0.02	8.25	2.52	-	-	-	-
	2022-09-18 8:30	5550	16.119	52.9	-0.02	8.20	2.50	-	-	-	-
	2022-09-18 9:00	5580	16.103	52.8	-0.02	8.15	2.48	-	-	-	-
	2022-09-18 9:30	5610	16.091	52.8	-0.01	8.11	2.47	-	-	-	-
	2022-09-18 10:00	5640	16.080	52.8	-0.01	8.07	2.46	-	-	-	-
	2022-09-18 10:30	5670 5700	16.071 16.062	52.7 52.7	-0.01 -0.01	8.04 8.01	2.45 2.44	-	-	-	-
	2022-09-18 11:00 2022-09-18 11:30	5730	16.051	52.7	-0.01	7.98	2.44	-	-	-	
	2022-09-18 12:00	5760	16.041	52.6	-0.01	7.94	2.43		-		<u> </u>
	2022-09-18 12:30	5790	16.033	52.6	-0.01	7.92	2.41	-	-	-	-
	2022-09-18 13:00	5820	16.024	52.6	-0.01	7.89	2.40	-	-	-	-
	2022-09-18 13:30	5850	16.017	52.6	-0.01	7.86	2.40	-	-	-	-
	2022-09-18 14:00	5880	16.010	52.5	-0.01	7.84	2.39	-	-	-	-
	2022-09-18 14:30	5910	16.002	52.5	-0.01	7.81	2.38	-	-	-	-
	2022-09-18 15:00	5940	15.993	52.5	-0.01	7.79	2.37	-	-	-	-
	2022-09-18 15:30	5970	15.985	52.4	-0.01	7.76	2.37	-	-	-	-
	2022-09-18 16:00	6000	15.979	52.4	-0.01	7.74	2.36	-	-	-	-
	2022-09-18 16:30	6030	15.972	52.4	-0.01	7.72	2.35	-	-	-	-
	2022-09-18 17:00	6060	15.964	52.4	-0.01	7.69	2.34	-	-	-	-
	2022-09-18 17:30 2022-09-18 18:00	6090 6120	15.955 15.946	52.3 52.3	-0.01 -0.01	7.66 7.63	2.34 2.33	-	-	-	-
	2022-09-18 18:30	6150	15.946	52.3	-0.01	7.60	2.33	-	-	-	-
	2022-09-18 19:00	6180	15.928	52.3	-0.01	7.57	2.31	-	-	-	-
	2022-09-18 19:30	6210	15.920	52.2	-0.01	7.54	2.30	-	-	-	-
	2022-09-18 20:00	6240	15.908	52.2	-0.01	7.51	2.29	-	-	-	-
	2022-09-18 20:30	6270	15.897	52.2	-0.01	7.47	2.28	-	-	-	-
	2022-09-18 21:00	6300	15.887	52.1	-0.01	7.44	2.27	-	-	-	-
	2022-09-18 21:30	6330	15.877	52.1	-0.01	7.40	2.26	-	-	-	-
	2022-09-18 22:00	6360	15.866	52.1	-0.01	7.37	2.25	-	-	-	-
	2022-09-18 22:30	6390	15.858	52.0	-0.01	7.34	2.24	-	-	-	-
	2022-09-18 23:00	6420	15.849	52.0	-0.01	7.31	2.23	-	-	-	-
10.0-= 00	2022-09-18 23:30	6450	15.842	52.0	-0.01	7.29	2.22	-	-	-	-
19-Sep-22	2022-09-19 0:00 2022-09-19 0:30	6480 6510	15.834 15.827	52.0 51.9	-0.01 -0.01	7.27 7.24	2.21 2.21	-	-	-	-
	2022-09-19 0.30	6540	15.820	51.9	-0.01	7.24	2.21	-	-	-	-
	2022-09-19 1:30	6570	15.812	51.9	-0.01	7.19	2.19	-	-	-	-
	2022-09-19 2:00	6600	15.803	51.9	-0.01	7.16	2.18	-	-	-	-
	2022-09-19 2:30	6630	15.796	51.8	-0.01	7.14	2.18	-	-	-	-
	2022-09-19 3:00	6660	15.788	51.8	-0.01	7.11	2.17	-	-	-	-
	2022-09-19 3:30	6690	15.780	51.8	-0.01	7.09	2.16	-	-	-	-
	2022-09-19 4:00	6720	15.774	51.8	-0.01	7.07	2.15	-	-	-	-
	2022-09-19 4:30	6750	15.766	51.7	-0.01	7.04	2.15	-	-	-	-
	2022-09-19 5:00	6780	15.759	51.7	-0.01	7.02	2.14	-	-	-	-
	2022-09-19 5:30	6810	15.750	51.7	-0.01	6.99	2.13	-	-	-	-
	2022-09-19 6:00	6840	15.744	51.7	-0.01	6.97	2.12	-	-	-	-
	2022-09-19 6:30	6870	15.735	51.6	-0.01	6.94	2.11	-	-	-	-
	2022-09-19 7:00	6900 6930	15.727	51.6 51.6	-0.01	6.91	2.11 2.10	-	-	-	-
	2022-09-19 7:30 2022-09-19 8:00	6960	15.719 15.711	51.6	-0.01 -0.01	6.89 6.86	2.10	-	-		-
	2022-09-19 8:00	6990	15.705	51.5	-0.01	6.84	2.09	-	-	-	-
	2022-09-19 9:00	7020	15.697	51.5	-0.01	6.81	2.08	-	-	-	-
	2022-09-19 9:30	7050	15.690	51.5	-0.01	6.79	2.00	-	-	-	-
	2022-09-19 10:00	7080	15.683	51.5	-0.01	6.77	2.06	-	-	-	-
	2022-09-19 10:30	7110	15.677	51.4	-0.01	6.75	2.06	-	-	-	-

Vell depth = 400 ft	W	ell diameter =	6 in	Measurement	method = Pail	and stopwat	ch	Pu	Pump Depth = 385 ft			
Comments	Real Time	Time since pump started, t (minutes)	Water level measurement (btoc) (m)	Water level measurement (btoc) (ft)	Water level changes (m)	Drawdown (ft)	Drawdown (m)	Pumping Rate (l/s)	Pumping Rate (USgpm)	Specific L/s/m	Capacity	
	2022-09-19 11:00	7140	15.671	51.4	-0.01	6.73	2.05	-	-	-	- USgpini/i	
	2022-09-19 11:30	7170	15.667	51.4	0.00	6.72	2.05	-	-	-	-	
	2022-09-19 12:00	7200	15.660	51.4	-0.01	6.69	2.04	-	-	-	-	
	2022-09-19 12:30	7230	15.657	51.4	0.00	6.68	2.04	-	-	-	-	
	2022-09-19 13:00	7260	15.651	51.4	-0.01	6.66	2.03	-	-	-	-	
	2022-09-19 13:30	7290	15.645	51.3	-0.01	6.64	2.02	-	-	-	-	
	2022-09-19 14:00	7320	15.639	51.3	-0.01	6.62	2.02	-	-	-	-	
	2022-09-19 14:30	7350	15.632	51.3	-0.01	6.60	2.01	-	-	-	-	
	2022-09-19 15:00	7380	15.627	51.3	0.00	6.59	2.01	-	-	-	-	
	2022-09-19 15:30	7410 7440	15.622 15.614	51.3 51.2	-0.01 -0.01	6.57 6.54	2.00 1.99	-	-	-	-	
	2022-09-19 16:00 2022-09-19 16:30	7440	15.608	51.2	-0.01	6.52	1.99	-	-	-	-	
	2022-09-19 17:00	7500	15.602	51.2	-0.01	6.50	1.99		-			
	2022-09-19 17:30	7530	15.596	51.2	-0.01	6.48	1.98	-	-	-	-	
	2022-09-19 18:00	7560	15.590	51.1	-0.01	6.46	1.97	-	-	-	-	
	2022-09-19 18:30	7590	15.581	51.1	-0.01	6.43	1.96	-	-	-	-	
	2022-09-19 19:00	7620	15.573	51.1	-0.01	6.41	1.95	-	-	-	-	
	2022-09-19 19:30	7650	15.564	51.1	-0.01	6.38	1.94	-	-	-	-	
	2022-09-19 20:00	7680	15.555	51.0	-0.01	6.35	1.93	-	-	-	-	
	2022-09-19 20:30	7710	15.547	51.0	-0.01	6.32	1.93	-	-	-	-	
	2022-09-19 21:00	7740	15.538	51.0	-0.01	6.29	1.92	-	-	-	-	
	2022-09-19 21:30	7770	15.531	51.0	-0.01	6.27	1.91	-	-	-	-	
	2022-09-19 22:00	7800	15.524	50.9	-0.01	6.25	1.90	-	-	-	-	
	2022-09-19 22:30 2022-09-19 23:00	7830 7860	15.517 15.512	50.9 50.9	-0.01 -0.01	6.23 6.21	1.90 1.89	-	-	-	-	
	2022-09-19 23:00	7890	15.506	50.9	-0.01	6.19	1.89	-	-	-	-	
20-Sep-22	2022-09-19 23:30	7920	15.500	50.9	-0.01	6.17	1.88	-	-	-	-	
20 000 22	2022-09-20 0:30	7950	15.493	50.8	-0.01	6.15	1.87	-	-	-	-	
	2022-09-20 1:00	7980	15.488	50.8	-0.01	6.13	1.87	-	-	-	-	
	2022-09-20 1:30	8010	15.481	50.8	-0.01	6.11	1.86	-	-	-	-	
	2022-09-20 2:00	8040	15.476	50.8	-0.01	6.09	1.86	-	-	-	-	
	2022-09-20 2:30	8070	15.470	50.8	-0.01	6.07	1.85	-	-	-	-	
	2022-09-20 3:00	8100	15.465	50.7	-0.01	6.05	1.84	-	-	-	-	
	2022-09-20 3:30	8130	15.460	50.7	0.00	6.04	1.84	-	-	-	-	
	2022-09-20 4:00	8160	15.455	50.7	0.00	6.02	1.83	-	-	-	-	
	2022-09-20 4:30	8190	15.451	50.7	0.00	6.01	1.83	-	-	-	-	
	2022-09-20 5:00	8220	15.446	50.7	0.00	5.99	1.83	-	-	-	-	
	2022-09-20 5:30 2022-09-20 6:00	8250 8280	15.442 15.437	50.7 50.6	0.00 -0.01	5.98 5.96	1.82 1.82	-	-	-	-	
	2022-09-20 6:30	8310	15.431	50.6	-0.01	5.94	1.81	-	-	-	-	
	2022-09-20 7:00	8340	15.425	50.6	-0.01	5.92	1.81	-	-	-	-	
	2022-09-20 7:30	8370	15.420	50.6	-0.01	5.90	1.80	-	-	-	-	
	2022-09-20 8:00	8400	15.415	50.6	0.00	5.89	1.80	-	-	-	-	
	2022-09-20 8:30	8430	15.411	50.6	0.00	5.88	1.79	-	-	-	-	
	2022-09-20 9:00	8460	15.407	50.5	0.00	5.86	1.79	-	-	-	-	
	2022-09-20 9:30	8490	15.404	50.5	0.00	5.85	1.78	-	-	-	-	
	2022-09-20 10:00	8520	15.401	50.5	0.00	5.84	1.78	-	-	-	-	
	2022-09-20 10:30	8550	15.398	50.5	0.00	5.83	1.78	-	-	-	-	
	2022-09-20 11:00	8580	15.396	50.5	0.00	5.83	1.78	-	-	-	-	
	2022-09-20 11:30	8610	15.394	50.5	0.00	5.82	1.77	-	-	-	-	
	2022-09-20 12:00 2022-09-20 12:30	8640 8670	15.391 15.389	50.5 50.5	0.00	5.81 5.81	1.77 1.77	-	-	-	-	
	2022-09-20 12:30	8670	15.389 15.389	50.5 50.5	0.00	5.81	1.77	-	-	-	-	
	2022-09-20 13:00	8730	15.388	50.5	0.00	5.80	1.77	-	-	-	-	
	2022-09-20 13:30	8760	15.387	50.5	0.00	5.80	1.77	-	-	-	-	
	2022-09-20 14:30	8790	15.386	50.5	0.00	5.79	1.77	-	-	-	-	
	2022-09-20 15:00	8820	15.384	50.5	0.00	5.79	1.76	-	-	-	-	
	2022-09-20 15:30	8850	15.385	50.5	0.00	5.79	1.76	-	-	-	-	
	2022-09-20 16:00	8880	15.382	50.5	0.00	5.78	1.76	-	-	-	-	

Comments	Real Time 2022-09-20 16:30 2022-09-20 17:00 2022-09-20 17:30 2022-09-20 17:30 2022-09-20 18:30 2022-09-20 18:30 2022-09-20 19:30 2022-09-20 20:30 2022-09-20 20:30 2022-09-20 21:30 2022-09-20 21:30 2022-09-20 22:30 2022-09-20 23:30 2022-09-20 23:30 2022-09-20 23:30 2022-09-20 10:00	Time since pump started, t (minutes) 8910 8940 8970 9000 9030 9060 9090 9030 9060 9090 9120 9150 9150 9180 9210 9240 9270	Water level measurement (btoc) (m) 15.381 15.379 15.377 15.374 15.365 15.360 15.365 15.360 15.355 15.349 15.344 15.339	Water level measurement (btoc) (ft) 50.5 50.5 50.4 50.4 50.4 50.4 50.4 50.4	Water level changes (m) 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 -0.01	(ft) 5.78 5.77 5.76 5.76 5.76 5.74 5.72	(m) 1.76 1.76 1.76 1.75 1.75	Pumping Rate (I/s) - - - - - -	Pumping Rate (USgpm) - - - - -	L/s/m - - -	Usgpm/f
21 Sep 22	2022-09-20 17:00 2022-09-20 17:30 2022-09-20 18:00 2022-09-20 18:30 2022-09-20 19:00 2022-09-20 19:30 2022-09-20 20:00 2022-09-20 20:30 2022-09-20 21:30 2022-09-20 21:30 2022-09-20 22:30 2022-09-20 23:00	8940 8970 9000 9030 9060 9090 9120 9150 9180 9210 9240 9270	15.379 15.377 15.374 15.370 15.365 15.360 15.355 15.349 15.344	50.5 50.5 50.4 50.4 50.4 50.4 50.4 50.4	0.00 0.00 0.00 -0.01 0.00	5.77 5.76 5.76 5.74 5.72	1.76 1.76 1.75 1.75	-	-		-
21 Sep 22	2022-09-20 17:00 2022-09-20 17:30 2022-09-20 18:00 2022-09-20 18:30 2022-09-20 19:00 2022-09-20 19:30 2022-09-20 20:00 2022-09-20 20:30 2022-09-20 21:30 2022-09-20 21:30 2022-09-20 22:30 2022-09-20 23:00	8940 8970 9000 9030 9060 9090 9120 9150 9180 9210 9240 9270	15.379 15.377 15.374 15.370 15.365 15.360 15.355 15.349 15.344	50.5 50.5 50.4 50.4 50.4 50.4 50.4 50.4	0.00 0.00 0.00 -0.01 0.00	5.77 5.76 5.76 5.74 5.72	1.76 1.76 1.75 1.75	-	-	-	
21 Sep 22	2022-09-20 18:00 2022-09-20 18:30 2022-09-20 19:00 2022-09-20 19:30 2022-09-20 20:00 2022-09-20 20:30 2022-09-20 21:30 2022-09-20 21:30 2022-09-20 22:30 2022-09-20 22:30 2022-09-20 23:30	9000 9030 9060 9120 9150 9180 9210 9240 9270	15.377 15.374 15.370 15.365 15.360 15.355 15.349 15.344	50.4 50.4 50.4 50.4 50.4 50.4 50.4	0.00 0.00 -0.01 0.00	5.76 5.76 5.74 5.72	1.76 1.75 1.75	-	-	-	
21 Sep 22	2022-09-20 18:30 2022-09-20 19:00 2022-09-20 19:30 2022-09-20 20:00 2022-09-20 20:30 2022-09-20 21:30 2022-09-20 21:30 2022-09-20 22:30 2022-09-20 23:00 2022-09-20 23:30	9030 9060 9090 9120 9150 9180 9210 9240 9270	15.370 15.365 15.360 15.355 15.349 15.344	50.4 50.4 50.4 50.4 50.4 50.4	0.00 -0.01 0.00	5.74 5.72	1.75				
21 Sep 22	2022-09-20 19:00 2022-09-20 19:30 2022-09-20 20:00 2022-09-20 20:30 2022-09-20 21:30 2022-09-20 21:30 2022-09-20 22:00 2022-09-20 22:30 2022-09-20 23:30	9060 9090 9120 9150 9180 9210 9240 9270	15.365 15.360 15.355 15.349 15.344	50.4 50.4 50.4 50.4	-0.01 0.00	5.72		-	-		-
21 Sep 22	2022-09-20 19:30 2022-09-20 20:00 2022-09-20 20:30 2022-09-20 21:00 2022-09-20 21:30 2022-09-20 22:00 2022-09-20 22:30 2022-09-20 23:00 2022-09-20 23:30	9090 9120 9150 9180 9210 9240 9270	15.360 15.355 15.349 15.344	50.4 50.4 50.4	0.00					-	-
21 Sep 22	2022-09-20 20:00 2022-09-20 20:30 2022-09-20 21:00 2022-09-20 21:30 2022-09-20 22:00 2022-09-20 22:30 2022-09-20 23:00 2022-09-20 23:30	9120 9150 9180 9210 9240 9270	15.355 15.349 15.344	50.4 50.4			1.74	-	-	-	-
21 Sep 22	2022-09-20 20:30 2022-09-20 21:00 2022-09-20 21:30 2022-09-20 22:00 2022-09-20 22:30 2022-09-20 23:00 2022-09-20 23:30	9150 9180 9210 9240 9270	15.349 15.344	50.4	-0.01	5.71	1.74	-	-	-	-
21 Sep 22	2022-09-20 21:00 2022-09-20 21:30 2022-09-20 22:00 2022-09-20 22:30 2022-09-20 23:00 2022-09-20 23:30	9180 9210 9240 9270	15.344			5.69	1.74	-	-	-	-
21 Sep 22	2022-09-20 21:30 2022-09-20 22:00 2022-09-20 22:30 2022-09-20 23:00 2022-09-20 23:30	9210 9240 9270		F0 3	-0.01	5.67	1.73	-	-	-	-
21 Son 22	2022-09-20 22:00 2022-09-20 22:30 2022-09-20 23:00 2022-09-20 23:30	9240 9270	15.339		-0.01	5.66	1.72	-	-	-	-
21 Son 22	2022-09-20 22:30 2022-09-20 23:00 2022-09-20 23:30	9270		50.3	-0.01	5.64	1.72	-	-	-	-
21 Son 22	2022-09-20 23:00 2022-09-20 23:30		15.334	50.3	0.00	5.62	1.71	-	-	-	-
21 Sop 22	2022-09-20 23:30		15.330	50.3	0.00	5.61	1.71	-	-	-	-
21 Son 22		9300	15.328	50.3	0.00	5.60	1.71	-	-	-	-
	////-/M-/////////	9330 9360	15.325 15.322	50.3 50.3	0.00	5.59 5.58	1.71 1.70	-	-	-	-
21-3ep-22				50.3	0.00	5.58	1.70	-	-	-	-
	2022-09-21 0:30 2022-09-21 1:00	9390 9420	15.320 15.317	50.3	0.00	5.57	1.70	-	-	-	-
	2022-09-21 1:00	9450	15.317	50.3	0.00	5.56	1.70	-	-		-
	2022-09-21 2:00	9480	15.311	50.2	0.00	5.55	1.69	-		-	
	2022-09-21 2:30	9510	15.307	50.2	0.00	5.53	1.69	-	-	-	-
	2022-09-21 3:00	9540	15.304	50.2	0.00	5.52	1.68	-	-	-	-
	2022-09-21 3:30	9570	15.301	50.2	0.00	5.52	1.68	-	-	-	-
	2022-09-21 4:00	9600	15.299	50.2	0.00	5.51	1.68	-	-	-	-
	2022-09-21 4:30	9630	15.297	50.2	0.00	5.50	1.68	-	-	-	-
	2022-09-21 5:00	9660	15.295	50.2	0.00	5.50	1.68	-	-	-	-
	2022-09-21 5:30	9690	15.293	50.2	0.00	5.49	1.67	-	-	-	-
	2022-09-21 6:00	9720	15.291	50.2	0.00	5.48	1.67	-	-	-	-
	2022-09-21 6:30	9750	15.289	50.2	0.00	5.47	1.67	-	-	-	-
	2022-09-21 7:00	9780	15.286	50.2	0.00	5.47	1.67	-	-	-	-
	2022-09-21 7:30	9810	15.283	50.1	0.00	5.46	1.66	-	-	-	-
	2022-09-21 8:00	9840	15.281	50.1	0.00	5.45	1.66	-	-	-	-
	2022-09-21 8:30	9870	15.282	50.1	0.00	5.45	1.66	-	-	-	-
	2022-09-21 9:00	9900	15.281	50.1	0.00	5.45	1.66	-	-	-	-
	2022-09-21 9:30	9930	15.279	50.1	0.00	5.44	1.66	-	-	-	-
	2022-09-21 10:00	9960	15.280	50.1	0.00	5.45	1.66	-	-	-	-
	2022-09-21 10:30	9990	15.279	50.1	0.00	5.44	1.66	-	-	-	-
	2022-09-21 11:00	10020	15.279	50.1	0.00	5.44	1.66	-	-	-	-
	2022-09-21 11:30	10050	15.280	50.1 50.1	0.00	5.45	1.66	-	-	-	-
	2022-09-21 12:00 2022-09-21 12:30	10080 10110	15.280 15.281	50.1	0.00	5.45 5.45	1.66 1.66	-	-	-	-
	2022-09-21 12:30	10110	15.281	50.1	0.00	5.45	1.66	-	-	-	-
	2022-09-21 13:00	10140	15.283	50.1	0.00	5.46	1.66	-	-	-	-
	2022-09-21 13:30	10200	15.286	50.1	0.00	5.46	1.67	-	-	-	-
	2022-09-21 14:30	10200	15.288	50.2	0.00	5.47	1.67	-	-	-	-
	2022-09-21 15:00	10260	15.290	50.2	0.00	5.48	1.67	-	-	-	-
	2022-09-21 15:30	10290	15.292	50.2	0.00	5.49	1.67	-	-	-	-
	2022-09-21 16:00	10320	15.294	50.2	0.00	5.49	1.67	-	-	-	-
	2022-09-21 16:30	10350	15.294	50.2	0.00	5.49	1.67	-	-	-	-
	2022-09-21 17:00	10380	15.294	50.2	0.00	5.49	1.67	-	-	-	-
	2022-09-21 17:30	10410	15.294	50.2	0.00	5.49	1.67	-	-	-	-
	2022-09-21 18:00	10440	15.292	50.2	0.00	5.49	1.67	-	-	-	-
	2022-09-21 18:30	10470	15.291	50.2	0.00	5.48	1.67	-	-	-	-
	2022-09-21 19:00	10500	15.289	50.2	0.00	5.48	1.67	-	-	-	-
	2022-09-21 19:30	10530	15.288	50.2	0.00	5.47	1.67	-	-	-	-
	2022-09-21 20:00	10560	15.285	50.1	0.00	5.46	1.66	-	-	-	-
	2022-09-21 20:30	10590	15.282	50.1	0.00	5.45	1.66	-	-	-	-
	2022-09-21 21:00 2022-09-21 21:30	10620 10650	15.278 15.274	50.1 50.1	0.00	5.44 5.43	1.66 1.65	-	-	-	-

Vell depth = 400 ft	Well diameter = 6 in			Measurement method = Pail and stopwatch				Pump Depth = 385 ft			
Comments	Real Time	Time since pump started, t (minutes)	Water level measurement (btoc) (m)	Water level measurement (btoc) (ft)	Water level changes (m)	Drawdown (ft)	Drawdown (m)	Pumping Rate (l/s)	Pumping Rate (USgpm)	•	Capacity
	2022-09-21 22:00	10680	15.270	50.1	0.00	5.41	1.65	-	-	-	
	2022-09-21 22:30	10710	15.267	50.1	0.00	5.40	1.65	-	-	-	-
	2022-09-21 23:00	10740	15.265	50.1	0.00	5.40	1.65	-	-	-	-
	2022-09-21 23:30	10770	15.263	50.1	0.00	5.39	1.64	-	-	-	-
22-Sep-22	2022-09-22 0:00	10800	15.263	50.1	0.00	5.39	1.64	-	-	-	-
	2022-09-22 0:30	10830	15.259	50.1	0.00	5.38	1.64	-	-	-	-
	2022-09-22 1:00	10860	15.255	50.1	0.00	5.36	1.64	-	-	-	-
	2022-09-22 1:30	10890	15.253	50.0	0.00	5.36	1.63	-	-	-	-
	2022-09-22 2:00	10920	15.251	50.0	0.00	5.35	1.63	-	-	-	-
	2022-09-22 2:30	10950	15.248	50.0 50.0	0.00	5.34	1.63 1.62	-	-	-	-
	2022-09-22 3:00 2022-09-22 3:30	10980 11010	15.245 15.244	50.0	0.00	5.33 5.33	1.62	-	-	-	-
	2022-09-22 3:30	11040	15.244	50.0	0.00	5.32	1.62	-	-	-	-
	2022-09-22 4:00	11040	15.242	50.0	0.00	5.32	1.62	-	-	-	1 -
	2022-09-22 5:00	11100	15.241	50.0	0.00	5.32	1.62	-	-	-	-
	2022-09-22 5:30	11130	15.239	50.0	0.00	5.31	1.62	-	-	-	-
	2022-09-22 6:00	11160	15.238	50.0	0.00	5.31	1.62	-	-	-	-
	2022-09-22 6:30	11190	15.236	50.0	0.00	5.30	1.62	-	-	-	-
	2022-09-22 7:00	11220	15.234	50.0	0.00	5.30	1.61	-	-	-	-
	2022-09-22 7:30	11250	15.231	50.0	0.00	5.29	1.61	-	-	-	-
	2022-09-22 8:00	11280	15.230	50.0	0.00	5.28	1.61	-	-	-	-
	2022-09-22 8:30	11310	15.228	50.0	0.00	5.27	1.61	-	-	-	-
	2022-09-22 9:00	11340	15.224	49.9	0.00	5.26	1.60	-	-	-	-
	2022-09-22 9:30	11370	15.221	49.9	0.00	5.25	1.60	-	-	-	-
	2022-09-22 10:00 2022-09-22 10:30	11400 11430	15.219 15.217	49.9 49.9	0.00	5.25 5.24	1.60 1.60	-	-	-	-
	2022-09-22 10:30	11450	15.217	49.9	0.00	5.24	1.60	-	-	-	-
	2022-09-22 11:30	11490	15.215	49.9	0.00	5.23	1.59	-	-	-	-
	2022-09-22 12:00	11520	15.214	49.9	0.00	5.23	1.59	-	-	-	-
	2022-09-22 12:30	11550	15.215	49.9	0.00	5.23	1.59	-	-	-	-
	2022-09-22 13:00	11580	15.214	49.9	0.00	5.23	1.59	-	-	-	-
	2022-09-22 13:30	11610	15.212	49.9	0.00	5.22	1.59	-	-	-	-
	2022-09-22 14:00	11640	15.211	49.9	0.00	5.22	1.59	-	-	-	-
	2022-09-22 14:30	11670	15.210	49.9	0.00	5.22	1.59	-	-	-	-
	2022-09-22 15:00	11700	15.209	49.9	0.00	5.21	1.59	-	-	-	-
	2022-09-22 15:30	11730	15.207	49.9	0.00	5.21	1.59	-	-	-	-
	2022-09-22 16:00	11760	15.207	49.9	0.00	5.21	1.59	-	-	-	-
	2022-09-22 16:30 2022-09-22 17:00	11790 11820	15.205 15.203	49.9 49.9	0.00	5.20 5.19	1.58 1.58	-	-	-	-
	2022-09-22 17:30	11850	15.203	49.9	0.00	5.19	1.58		-		
	2022-09-22 18:00	11880	15.199	49.9	0.00	5.18	1.58	-	-	-	-
	2022-09-22 18:30	11910	15.196	49.9	0.00	5.17	1.58	-	-	-	-
	2022-09-22 19:00	11940	15.192	49.8	0.00	5.16	1.57	-	-	-	-
	2022-09-22 19:30	11970	15.189	49.8	0.00	5.15	1.57	-	-	-	-
	2022-09-22 20:00	12000	15.184	49.8	0.00	5.13	1.56	-	-	-	-
	2022-09-22 20:30	12030	15.179	49.8	0.00	5.12	1.56	-	-	-	-
	2022-09-22 21:00	12060	15.175	49.8	0.00	5.10	1.56	-	-	-	-
	2022-09-22 21:30	12090	15.172	49.8	0.00	5.09	1.55	-	-	-	-
	2022-09-22 22:00	12120	15.167	49.8	0.00	5.08	1.55	-	-	-	-
	2022-09-22 22:30	12150	15.163	49.7	0.00	5.06	1.54	-	-	-	-
	2022-09-22 23:00 2022-09-22 23:30	12180 12210	15.158	49.7 49.7	0.00 -0.01	5.05 5.03	1.54 1.53	-	-	-	-
23-Sep-22	2022-09-22 23:30	12210	15.153 15.147	49.7 49.7	-0.01 -0.01	5.03	1.53	-	-	-	-
23-3ep-22	2022-09-23 0:00	12240	15.147	49.7	0.00	4.99	1.53	-	-	-	-
	2022-09-23 1:00	12300	15.142	49.7	0.00	4.99	1.52	-	-	-	-
	2022-09-23 1:30	12330	15.137	49.7	0.00	4.96	1.52	-	-	-	-
	2022-09-23 2:00	12360	15.129	49.6	0.00	4.95	1.51	-	-	-	-
	2022-09-23 2:30	12390	15.125	49.6	0.00	4.94	1.50	-	-	-	-
	2022-09-23 3:00	12420	15.121	49.6	0.00	4.93	1.50	-	-	-	-

Nell depth = 400 ft	W	Well diameter = 6 in			Measurement method = Pail and stopwatch				mp Depth = 38	5 ft	
Comments	Real Time	Time since pump started, t (minutes)	Water level measurement (btoc) (m)	Water level measurement (btoc) (ft)	Water level changes (m)	Drawdown (ft)	Drawdown (m)	Pumping Rate (l/s)	Pumping Rate (USgpm)	Specific	c Capacity
										L/s/m	Usgpm/ft
	2022-09-23 3:30	12450	15.117	49.6	0.00	4.91	1.50	-	-	-	-
	2022-09-23 4:00	12480	15.112	49.6	0.00	4.90	1.49	-	-	-	-
	2022-09-23 4:30	12510	15.109	49.6	0.00	4.89	1.49	-	-	-	-
	2022-09-23 5:00	12540	15.106	49.6	0.00	4.88	1.49	-	-	-	-
	2022-09-23 5:30	12570	15.104	49.6	0.00	4.87	1.48	-	-	-	-
	2022-09-23 6:00	12600	15.100	49.5	0.00	4.86	1.48	-	-	-	-
	2022-09-23 6:30	12630	15.097	49.5	0.00	4.85	1.48	-	-	-	-
	2022-09-23 7:00	12660	15.094	49.5	0.00	4.84	1.47	-	-	-	-
	2022-09-23 7:30	12690	15.091	49.5	0.00	4.83	1.47	-	-	-	-
	2022-09-23 8:00	12720	15.087	49.5	0.00	4.81	1.47	-	-	-	-
	2022-09-23 8:30	12750	15.082	49.5	0.00	4.80	1.46	-	-	-	-
	2022-09-23 9:00	12780	15.079	49.5	0.00	4.79	1.46	-	-	-	-
	2022-09-23 9:30	12810	15.076	49.5	0.00	4.78	1.46	-	-	-	-
	2022-09-23 10:00	12840	15.074	49.5	0.00	4.77	1.45	-	-	-	-
	2022-09-23 10:30	12870	15.070	49.4	0.00	4.76	1.45	-	-	-	-
	2022-09-23 11:00	12900	15.068	49.4	0.00	4.75	1.45	-	-	-	-
	2022-09-23 11:30	12930	15.066	49.4	0.00	4.74	1.45	-	-	-	-

Appendix C

Laboratory Water Quality Reports

CERTIFICATE OF ANALYSIS

REPORTED TO	Value Contracting P.O. Box 256		
	Okanagan Falls, BC V0H 1R0		
ATTENTION	Karen Pearce	WORK ORDER	2212201
PO NUMBER PROJECT	General Potability Comprehensive Analysis	RECEIVED / TEMP REPORTED	2022-09-16 12:00 / 13.2°C 2022-09-22 13:49
PROJECT INFO	Johnsen	COC NUMBER	No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

It's simple. We figure the more you enjoy working with our

opportunities to support you.

members;

likely you are to give us continued

We've Got Chemistry

engaged team

fun and

the more

Ahead of the Curve

Page 1 of 5

Through research, regulation and instrumentation, knowledge, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

By engaging our services, you are agreeing to CARO Analytical Service's Standard Terms and Conditions outlined here: https://www.caro.ca/terms-conditions

If you have any questions or concerns, please contact me at TeamCaro@caro.ca

Authorized By:

Team CARO **Client Service Representative**

1-888-311-8846 | www.caro.ca

#110 4011 Viking Way Richmond, BC V6V 2K9 | #102 3677 Highway 97N Kelowna, BC V1X 5C3 | 17225 109 Avenue Edmonton, AB T5S 1H7 | #108 4475 Wayburne Drive Burnaby, BC V5G 4X4

TEST RESULTS

			-		Contraction of the local division of the loc	
REPORTED TOValue ContractingPROJECTComprehensive Analysis				WORK ORDER	22I2201 2022-09-2	2 13:49
Analyte	Result	Guideline	RL	Units	Analyzed	Qualifie
1750 Highway 3 (22l2201-01) Matrix: Water	Sampled: 20	22-09-15 21:00				
Anions						
Chloride	12.9	AO ≤ 250	0.10	mg/L	2022-09-21	
Fluoride	0.19	MAC = 1.5	0.10	mg/L	2022-09-21	
Nitrate (as N)	3.19	MAC = 10	0.010	mg/L	2022-09-21	HT1
Nitrite (as N)	< 0.010	MAC = 1	0.010	mg/L	2022-09-21	HT1
Sulfate	18.6	AO ≤ 500	1.0	mg/L	2022-09-21	
Calculated Parameters						
Hardness, Total (as CaCO3)	250	None Required	0.500	mg/L	N/A	
Langelier Index	1.0	N/A	-5.0		2022-09-22	
Solids, Total Dissolved	335	AO ≤ 500	1.00	mg/L	N/A	
General Parameters						
Alkalinity, Total (as CaCO3)	286	N/A	1.0	mg/L	2022-09-21	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A		mg/L	2022-09-21	
Alkalinity, Bicarbonate (as CaCO3)	286	N/A		mg/L	2022-09-21	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A		mg/L	2022-09-21	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A		mg/L	2022-09-21	
Colour, True	< 5.0	AO ≤ 15		CU	2022-09-17	
Conductivity (EC)	546	N/A	2.0	µS/cm	2022-09-21	
Cyanide, Total	< 0.0020	MAC = 0.2	0.0020		2022-09-21	
pH	8.25	7.0-10.5	0.10	pH units	2022-09-21	HT2
Temperature, at pH	23.4	N/A		°C	2022-09-21	HT2
Turbidity	< 0.10	OG < 1	0.10	NTU	2022-09-18	
Microbiological Parameters						
Coliforms, Total	< 1	MAC = 0	1	CFU/100 mL	2022-09-16	
E. coli	< 1	MAC = 0	1	CFU/100 mL	2022-09-16	
Total Metals						
Aluminum, total	0.0073	OG < 0.1	0.0050	mg/L	2022-09-20	
Antimony, total	< 0.00020	MAC = 0.006	0.00020		2022-09-20	
Arsenic, total	< 0.00050	MAC = 0.01	0.00050	-	2022-09-20	
Barium, total	0.0061	MAC = 2	0.0050	•	2022-09-20	
Boron, total	< 0.0500	MAC = 5	0.0500		2022-09-20	
Cadmium, total	< 0.000010	MAC = 0.005	0.000010		2022-09-20	
Calcium, total	74.9	None Required		mg/L	2022-09-20	
Chromium, total	0.00080	MAC = 0.05	0.00050		2022-09-20	
Cobalt, total	< 0.00010	N/A	0.00010	mg/L	2022-09-20	
Copper, total	0.00125	MAC = 2	0.00040	mg/L	2022-09-20	
Iron, total	0.013	AO ≤ 0.3	0.010	mg/L	2022-09-20	
Lead, total	< 0.00020	MAC = 0.005	0.00020	mg/L	2022-09-20	
Magnesium, total	15.1	None Required	0.010	mg/L	2022-09-20	
Manganese, total	0.00050	MAC = 0.12	0.00020	mg/L	2022-09-20	
Mercury, total	< 0.000010	MAC = 0.001	0.000010	mg/L	2022-09-21	

TEST RESULTS

REPORTED TO PROJECT	Value Contracting Comprehensive Analysis				WORK ORDER REPORTED	22l2201 2022-09-2	2 13:49
Analyte		Result	Guideline	RL	Units	Analyzed	Qualifier

1750 Highway 3 (22/2201-01) | Matrix: Water | Sampled: 2022-09-15 21:00, Continued

Molybdenum, total	0.00336	N/A	0.00010	mg/L	2022-09-20
Nickel, total	< 0.00040	N/A	0.00040	mg/L	2022-09-20
Potassium, total	4.47	N/A	0.10	mg/L	2022-09-20
Selenium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2022-09-20
Sodium, total	20.2	AO ≤ 200	0.10	mg/L	2022-09-20
Strontium, total	0.329	MAC = 7	0.0010	mg/L	2022-09-20
Uranium, total	0.00999	MAC = 0.02	0.000020	mg/L	2022-09-20
Zinc, total	< 0.0040	AO ≤ 5	0.0040	mg/L	2022-09-20

Sample Qualifiers:

HT1 The sample was prepared and/or analyzed past the recommended holding time.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

APPENDIX 1: SUPPORTING INFORMATION

EPORTED TO Value Contra ROJECT Comprehens		WORK ORDER REPORTED	2212201 2022-09-23	2 13:49
Analysis Description	Method Ref.	Technique	Accredited	Location
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	~	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	~	Kelowna
Coliforms, Total in Water	SM 9222* (2017)	Membrane Filtration / Chromocult Agar	~	Kelowna
Colour, True in Water	SM 2120 C (2017)	Spectrophotometry (456 nm)	1	Kelowna
Conductivity in Water	SM 2510 B (2017)	Conductivity Meter	1	Kelowna
Cyanide, SAD in Water	ASTM D7511-12	Flow Injection with In-Line UV Digestion and Amperometry	~	Kelowna
E. coli in Water	SM 9222* (2017)	Membrane Filtration / Chromocult Agar	1	Kelowna
Hardness in Water	SM 2340 B* (2017)	Calculation: 2.497 [total Ca] + 4.118 [total Mg] (Est)	1	N/A
Langelier Index in Water	SM 2330 B (2017)	Calculation		N/A
Mercury, total in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	~	Richmond
pH in Water	SM 4500-H+ B (2017)	Electrometry	~	Kelowna
Solids, Total Dissolved in Water	SM 1030 E (2017)	SM 1030 E (2011)		N/A
Total Metals in Water EPA 200.2 / EPA 6020B		HNO3+HCI Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	*	Richmond
Turbidity in Water	SM 2130 B (2017)	Nephelometry	~	Kelowna

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference in

Glossary of Terms:

< °C	Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors Degrees Celcius Aesthetic Objective Colony Forming Units per 100 millilitres
	Aesthetic Objective
10	
AO	Colony Forming Units per 100 millilitres
CFU/100 mL	Colorly Forming Orms per roominances
CU	Colour Units (referenced against a platinum cobalt standard)
MAC	Maximum Acceptable Concentration (health based)
mg/L	Milligrams per litre
NTU	Nephelometric Turbidity Units
OG	Operational Guideline (treated water)
pH units	pH < 7 = acidic, ph > 7 = basic
µS/cm	Microsiemens per centimetre
ASTM	ASTM International Test Methods
EPA	United States Environmental Protection Agency Test Methods
SM	Standard Methods for the Examination of Water and Wastewater, American Public Health Association

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO	Value Contracting
PROJECT	Comprehensive Analysis

WORK ORDER REPORTED

22l2201 2022-09-22 13:49

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing. The quality control (QC) data is available upon request

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:TeamCaro@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guideline (s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

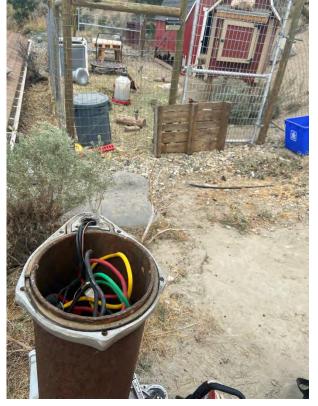
Appendix D

Photographic Documentation

Photographs 1, 2, 3. Site Visit (September 7, 2022)

- 2. View of Lot 5 with WTN 124408 in upland area east of the landing. View looking East.
- 1. View of well casing stick-up on WTN 124408 (WPID 62040). Subsequently cut down to nominally 0.6m above current grade to facilitate test. View looking West.

3. Photo of wooden well enclosure at southern extent of property. Enclosure houses WTN 105407. View looking South.


Photographs 4, 5 and 6. Site Visit (September 7, 2022)

4. View of wellhead of WTN 105407 (WPID 27891) inside wooden well enclosure. Datalogger deployed inside white PVC stilling well during pumping test with WTN 124408. View looking north.

5. View of observation well WTN 84786, Driveway Well on neighbouring property to the west of site. Acoustic sounder used to monitor level. View looking southeast.

 View of observation well WTN 69157, Goat Paddock Well on neighbouring property to the west of site. Goat Paddock enclosure in background. Acoustic sounder used to monitor level. View looking north.

Photographs 7 and 8. Site Visit (September 7, 2022)

 Pumping test on WTN 124408. Discharge hose ran to the east to discharge at top of bank into unnamed draw along north of site. View looking northeast.

 Pumping test on WTN 124408. Depiction of new casing stickup (nominally 0.6m above current ground elevation) to facilitate pumping test. View looking south.

Groundwater Supply Development and Management Source Water Assessment and Protection Well Monitoring & Maintenance Environmental & Water Quality Monitoring Storm & Wastewater Disposal to Ground Groundwater Modeling Aquifer Test Design and Analysis Geothermal / Geoexchange Systems Policy and Guideline Development Applied Research Rural Subdivision Services Environmental Assessment & Permitting